Formal Abstractions of Neural Sequence Models

Code!?

Gail Weiss, ICGI 2021

Formal Abstractions of Neural Sequence Models

Gail Weiss, ICGI 2021

Formal Abstractions of Neural Sequence Models

Code!?

Overview

Recurrent Neural Networks (RNNs)

- Introduction
- RNN-Automata relation
- Extraction
- DFAs
- WFAs
- More
- Analysis

Transformers

- Introduction
- A formal abstraction

Overview

Recurrent Neural Networks (RNNs)

- Introduction
- RNN-Automata relation
- Extraction
- DFAs
- WFAs
- More
- Analysis

Transformers

- Introduction
- A formal abstraction

RNNs: Introduction

Finding Structure in Time

- Elman 1990

$$
x_{1}, y \in \mathbb{R}^{d_{h}} \quad x_{2} \in \mathbb{R}^{d_{i}}
$$

RNNs: Introduction

Finding Structure in Time

- Elman 1990

$\forall t: \quad h_{t} \in \mathbb{R}^{d_{h}} \quad x_{t} \in \mathbb{R}^{d_{i}}$

RNNs: Introduction

Finding Structure in Time

- Elman 1990

$$
e: \Sigma \rightarrow \mathbb{R}^{d_{i}}
$$

input embedding

$$
x_{t}=e\left(w_{t}\right)
$$

$$
\forall t: \quad h_{t} \in \mathbb{R}^{d_{h}} \quad x_{t} \in \mathbb{R}^{d_{i}}
$$

RNNs: Introduction

Finding Structure in Time

- Elman 1990

$$
x_{t}=e\left(w_{t}\right)
$$

$$
\forall t: \quad h_{t} \in \mathbb{R}^{d_{h}} \quad x_{t} \in \mathbb{R}^{d_{i}}
$$

RNNs: Introduction

Finding Structure in Time

- Elman 1990

$$
w=w_{0} w_{1} w_{2} \in \Sigma^{*} \quad x_{t}=e\left(w_{t}\right)
$$

$$
\forall t: \quad h_{t} \in \mathbb{R}^{d_{h}} \quad x_{t} \in \mathbb{R}^{d_{i}}
$$

RNNs: Introduction

Finding Structure in Time

- Elman 1990

$$
w=w_{0} w_{1} w_{2} \in \Sigma^{*} \quad x_{t}=e\left(w_{t}\right) \quad \forall t: \quad h_{t} \in \mathbb{R}^{d_{h}} \quad x_{t} \in \mathbb{R}^{d_{i}}
$$

RNNs: Introduction

h_{0}
initial
hidden state

$$
e: \Sigma \rightarrow \mathbb{R}^{d_{i}}
$$

input embedding

Finding Structure in Time

- Elman 1990

RNNs: Introduction

RNNs: Introduction

RNNs: Introduction

Overview

Recurrent Neural Networks (RNNs)

- Introduction
- RNN-Automata relation
- Extraction
- DFAs
- WFAs
- More
- Analysis

Transformers

- Introduction
- A formal abstraction

RNNs: Automata Relation

RNNs: Automata Relation

RNNs: Automata Relation

RNNs: Automata Relation

RNNs: Automata Relation

When learning a regular language, simple RNNs (Elman RNNs) cluster their states in manner that resembles an automaton for that language

Finite State Automata and Simple Recurrent Networks

- Cleeremans et al, 1989 (references older version of Elman 1990)

Overview

Recurrent Neural Networks (RNNs)

- Introduction
- RNN-Automata relation
- Extraction
- DFAs
- WFAs
- More
- Analysis

Transformers

- Introduction
- A formal abstraction

Extraction

Quantisation + Exploration of
RNNs, for WFAs
Zhang et al (2021)

Learning Regular Trees Sakakibara (1992)

Drewes and Högberg (2007)

Regular Trees
\leftrightarrow Visibly Pushdown
Automata
Alur and Madhusudan (2004)

RNNs to DFAs:
Quantisation
Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

RNNs to DFAs:
L-star + Iterative Quantisation Weiss et al (2017)

RNNs to
DFAs: L-star Mayr and Yovine (2018)

L-star
Angluin (1987)

RNNs: Extracting DFAs: Clustering

Omlin and Giles, 1996
Partition the RNN state space by dividing each dimension into q equal portions. Explore the partitions, marking transitions between them according to first-visited state in each partition

Extraction of Rules from Discrete-time Recurrent Neural Networks

RNNs: Extracting DFAs: Clustering

Quantisation, example (on RNN with total hidden state dimension 2)

Input alphabet: $\{\mathrm{a}, \mathrm{b}\}$

Extraction of Rules from Discrete-time Recurrent Neural Networks

- Omlin and Giles, 1996

RNNs: Extracting DFAs: Clustering

Quantisation, example (on RNN with total hidden state dimension 2)

Input alphabet: $\{\mathrm{a}, \mathrm{b}\}$
quantisation level: $q=3$

Extraction of Rules from Discrete-time Recurrent Neural Networks

- Omlin and Giles, 1996

RNNs: Extracting DFAs: Clustering

Quantisation, example (on RNN with total hidden state dimension 2)

Input alphabet: $\{\mathrm{a}, \mathrm{b}\}$
\bigcirc Initial state: $(0,0)$
quantisation level: $q=3$

Extraction of Rules from Discrete-time Recurrent Neural Networks

- Omlin and Giles, 1996

RNNs: Extracting DFAs: Clustering

Quantisation, example (on RNN with total hidden state dimension 2)

Input alphabet: $\{\mathrm{a}, \mathrm{b}\}$
\bigcirc Initial state: $(0,0)$
Accepting state

- Rejecting state
quantisation level: $q=3$

Extraction of Rules from Discrete-time Recurrent Neural Networks

- Omlin and Giles, 1996

RNNs: Extracting DFAs: Clustering

Quantisation, example (on RnN with total hidden state dimension 2)

Input alphabet: $\{\mathrm{a}, \mathrm{b}\}$
\bigcirc Initial state: $(0,0)$
Accepting state

- Rejecting state
quantisation level: $q=3$

Extraction of Rules from Discrete-time Recurrent Neural Networks

- Omlin and Giles, 1996

RNNs: Extracting DFAs: Clustering

Quantisation, example (on RnN with total hidden state dimension 2)

Input alphabet: $\{\mathrm{a}, \mathrm{b}\}$
\bigcirc Initial state: $(0,0)$
Accepting state

- Rejecting state
quantisation level: $q=3$

Extraction of Rules from Discrete-time Recurrent Neural Networks

- Omlin and Giles, 1996

RNNs: Extracting DFAs: Clustering

Quantisation, example (on RnN with total hidden state dimension 2)

Input alphabet: $\{\mathrm{a}, \mathrm{b}\}$
\bigcirc Initial state: $(0,0)$
Accepting state

- Rejecting state
quantisation level: $q=3$

Extraction of Rules from Discrete-time Recurrent Neural Networks

- Omlin and Giles, 1996

RNNs: Extracting DFAs: Clustering

Quantisation, example (on RNN with total hidden state dimension 2)

Input alphabet: $\{\mathrm{a}, \mathrm{b}\}$
\bigcirc Initial state: $(0,0)$
Accepting state

- Rejecting state
quantisation level: $q=3$

Extraction of Rules from Discrete-time Recurrent Neural Networks

- Omlin and Giles, 1996

RNNs: Extracting DFAs: Clustering

Quantisation, example (on RnN with total hidden state dimension 2)

Extraction of Rules from Discrete-time Recurrent Neural Networks

- Omlin and Giles, 1996

RNNs: Extracting DFAs: Clustering

Quantisation, example (on RNN with total hidden state dimension 2)

Input alphabet: $\{\mathrm{a}, \mathrm{b}\}$
\bigcirc Initial state: $(0,0)$
Accepting state

- Rejecting state
quantisation level: $q=3$

Extraction of Rules from Discrete-time Recurrent Neural Networks

- Omlin and Giles, 1996

RNNs: Extracting DFAs: Clustering

Quantisation, example (on RNN with total hidden state dimension 2)

Input alphabet: $\{\mathrm{a}, \mathrm{b}\}$Initial state: $(0,0)$Accepting state

- Rejecting state
quantisation level: $q=3$

Extraction of Rules from Discrete-time Recurrent Neural Networks

- Omlin and Giles, 1996

RNNs: Extracting DFAs: Clustering

Quantisation, example (on RNN with total hidden state dimension 2)

Input alphabet: $\{\mathrm{a}, \mathrm{b}\}$Initial state: $(0,0)$Accepting state

- Rejecting state
quantisation level: $q=8$

Extraction of Rules from Discrete-time Recurrent Neural Networks

- Omlin and Giles, 1996

RNNs: Extracting DFAs: Clustering
 Other approaches to clustering

Learning Finite State Machines With Self-clustering Recurrent Networks
Zeng et al, 1993

Extracting Rules from a (Fuzzy / Crisp) Recurrent Neural Network using a Self-Organizing Map
Blanco et al, 2000

State automata extraction from recurrent neural nets using k-means and fuzzy clustering
Cechin et al, 2003

Surveys:

Rule Extraction from Recurrent Neural Networks: A Taxonomy and Review
Jacobsson, 2005
An Empirical Evaluation of Rule Extraction from Recurrent Neural Networks
Wang et al, 2017

Extraction

RNNs to DFAs:

Extraction

DFAs

Learning
Regular Trees
Sakakibara (1992)
Drewes and
RNNs to DFAs: Quantisation Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

Extraction

 RNNs to DFAs: Quantisation Zeng et al (1993), Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)
DFAs

Learning
Regular Trees
Sakaklibara (1992)
Drewes and
Högberg (2007)

Rabusseau et al (2017)
Rabusseau et al (2019)

RNNs: Extracting DFAs: L-star

 The L-star algorithm
RNNs: Extracting DFAs: L-star

 The L-star algorithm

RNNs: Extracting DFAs: L-star

 The L-star algorithm

RNNs: Extracting DFAs: L-star

 The L-star algorithm

RNNs: Extracting DFAs: L-star

 The L-star algorithm

RNNs: Extracting DFAs: L-star The L-star algorithm

RNNs: Extracting DFAs: L-star The L-star algorithm

Learning Regular Sets from

Extraction

DFAs

Learning
Regular Trees
Sakakibara (1992)
Drewes and
RNNs to DFAs: Quantisation Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

Extraction

RNNs to DFAs:

RNNs: Extracting DFAs: L-star

Apply L-star to an RNN, to learn a DFA representing/approximating it

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples
Weiss et al, 2017

Regular Inference on Artificial Neural Networks
Mayr and Yovine, 2018

RNNs: Extracting DFAs: L-star

Apply L-star to an RNN, to learn a DFA representing/approximating it

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples
Weiss et al, 2017

Regular Inference on Artificial Neural Networks
Mayr and Yovine, 2018

Membership Queries

RNNs: Extracting DFAs: L-star

Apply L-star to an RNN, to learn a DFA representing/approximating it

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples
Weiss et al, 2017

Regular Inference on Artificial Neural Networks
Mayr and Yovine, 2018

Membership Queries
$b a b ?$

年 or

Equivalence Queries

RNNs: Extracting DFAs: L-star

Equivalence Queries

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

Weiss et al, 2017

RNNs: Extracting DFAs: L-star

Equivalence Queries

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

Weiss et al, 2017

RNNs: Extracting DFAs: L-star

Equivalence Queries

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

RNNs: Extracting DFAs: L-star

Equivalence Queries

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

Weiss et al, 2017

RNNs: Extracting DFAs: L-star

Equivalence Queries

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

RNNs: Extracting DFAs: L-star

Equivalence Queries

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

RNNs: Extracting DFAs: L-star

Equivalence Queries

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

RNNs: Extracting DFAs: L-star

Equivalence Queries

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

Weiss et al, 2017

RNNs: Extracting DFAs: L-star

Equivalence Queries

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

RNNs: Extracting DFAs: L-star

Equivalence Queries

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

Weiss et al, 2017

RNNs: Extracting DFAs: L-star

Equivalence Queries

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

Weiss et al, 2017

RNNs: Extracting DFAs: L-star

Equivalence Queries

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

Weiss et al, 2017

RNNs: Extracting DFAs: L-star

Equivalence Queries

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

RNNs: Extracting DFAs: L-star

Equivalence Queries

Randomly Sample for Counterexamples
(Paper provides PAC analysis of this approach for equivalence queries)

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

Weiss et al, 2017

Regular Inference on Artificial Neural Networks
Mayr and Yovine, 2018

RNNs: Extracting DFAs: L-star

Equivalence Queries

Assumes white-box RNN

Complicated

Randomly Sample for Counterexamples
(Paper provides PAC analysis of this approach for equivalence queries)

Slower
Assumes black-box NN
Simple

Extracting Automata from Recurrent Neural Networks using Queries and Counterexamples

Weiss et al, 2017

Regular Inference on Artificial Neural Networks
Mayr and Yovine, 2018

RNNs: Extracting DFAs: L-star

Equivalence Queries

Slower

RNNs: Extracting DFAs: L-star

Equivalence Queries

Learning Balanced Parentheses over $\Sigma=\{(),, a-z\}$
e.g. (), ()a()b, abc(()(a)), etc

RNNs: Extracting DFAs: L-star

Equivalence Queries

Learning Balanced Parentheses over $\Sigma=\{(),, a-z\}$
e.g. (), ()a()b, abc(()(a)), etc

RNNs: Extracting DFAs: L-star

Equivalence Queries

Learning Balanced Parentheses over $\Sigma=\{(),, a-z\}$
e.g. (), ()a()b, abc(()(a)), etc

Random sampling counterexamples:

```
))
tg(gu(uh) (57.5s)
((wviw(iac)r)mrsnqqb)iew (231.5s)
```

Abstraction based

, (${ }^{\text {a }}$ ((0)	(1.6s)
		((0))	(3.1s)
Random sampling counterexamples:		(((0)))	(3.1s)
		((((0))))	(3.4s)
))	(1.5s)	(((()(0))))	(4.7s)
tg(gu()uh)	(57.5s)	((((()(0))))))	(6.3s)
((wviw(iac)r)mrsnqqb)iew	(231.5s)	(((((()(0)))))))	(9.2s)
		((()(((()))))))))	(14.0s)

Extraction

RNNs to DFAs:

DFAs

Learning
Regular Trees
Sakakibara (1992)
Drewes and
Högberg (2007)

Quantisation
Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

L-star
Angluin (1987)

Extraction

RNNs to DFAs:

Quantisation
Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

Applying Exact* Learning to NNs is possible, and can be effective!
*Well, it's not quite exact: we can only approximate the equivalence queries

RNNs to
DFAs: L-star Mayr and Yovine (2018)

RNNs to WFAs:

Spectral
Bailly et al (2009)

Extraction

RNNs to DFAs:

Applying Exact* Learning to NNs is possible, and can be effective!
*Well, it's not quite exact: we can only approximate the equivalence queries

However, L-star slows quickly: it is polynomial in alphabet, DFA, and counterexample size

Exploring application of efficient variants of L-star (and making them!) could be interesting!

Extraction

RNNs to DFAs:

Applying Exact* Learning to NNs is possible, and can be effective!
*Well, it's not quite exact: we can only approximate the equivalence queries

However, L-star slows quickly: it is polynomial in alphabet, DFA, and counterexample size

Exploring application of efficient variants of L-star (and making them!) could be interesting!

And now: we know RNNs can encode more than just DFAs, so let's keep going

RNNs to
DFAs: L-star Mayr and Yovine (2018)

Extraction WFAs

Learning
Regular Trees
Sakakibara (1992)
Högberg (2007)

Regular Trees

Extraction

Spectral Learning

Hsu et al (2008), Bailly et al (2009), Balle et al (2013)

WFAs

Quantisation + Exploration of
RNNs, for WFAs
Zhang et al (2021)

When considering a finite alphabet, second-order simple RNNs are equivalent to weighted finite automata (WFAs)

Connecting Weighted Automata and Recurrent Neural Networks through Spectral Learning

Learning Grammars

Extraction

L-star
Angluin (1987)

WFAs

Quantisation +
Exploration of
RNNs, for WFAs
Zhang et al (2021)

Learning
Regular Trees
Sakakibara (1992)
Drewes and
Högberg (2007)

Regular Trees

Spectral Learning

Hsu et al (2008), Bailly et al (2009),
Balle et al (2013)

2-RNNs to WFAs:
Spectral
Rabusseau et al (2017)
Rabusseau et al (2019)

Learning Grammars

RNNs: Extracting WFAs: Background!

- Language-Model RNNs
- WFAs
- Matrix Representation

RNNs: Extracting WFAs: Background!

- Language-Model RNNs
- WFAs
- Matrix Representation

RNNs: Extracting WFAs: Background!

RNNs: Extracting WFAs: Background!

RNNs: Extracting WFAs: Background!

RNNs: Extracting WFAs: Background!

$\operatorname{RNN}\left(w_{1} w_{2}\right)=P\left(w_{1} \mid \varepsilon\right) \cdot P\left(w_{2} \mid w_{1}\right) \cdot P\left(\operatorname{EOS} \mid w_{1} w_{2}\right)$

RNNs: Extracting WFAs: Background!

- Language-Model RNNs
- WFAs
- Matrix Representation

RNNs: Extracting WFAs: Background!

DFA
deterministic

$$
A=\left\langle\Sigma, Q, q_{0}, F, \delta_{Q}\right\rangle
$$

$$
\delta_{Q}: Q \times \Sigma \rightarrow Q
$$

$$
A(w)= \begin{cases}\text { Acc } & \text { if } \hat{\delta}_{Q}(w) \in F \\ \text { Rej, } & \text { else }\end{cases}
$$

RNNs: Extracting WFAs: Background!

DFA
deterministic

$$
A=\left\langle\Sigma, Q, q_{0}, F, \delta_{Q}\right\rangle
$$

$$
\delta_{Q}: Q \times \Sigma \rightarrow Q
$$

$$
\delta_{W}: Q \times \Sigma \rightarrow \mathbb{R}
$$

$$
\beta: Q \rightarrow \mathbb{R}
$$

RNNs: Extracting WFAs: Background!

DFA
deterministic
$A=\left\langle\Sigma, Q, q_{0}, F, \delta_{Q}\right\rangle$

$$
\delta_{Q}: Q \times \Sigma \rightarrow Q
$$

$$
\begin{gathered}
\delta_{W}: Q \times \Sigma \rightarrow \mathbb{R} \\
\beta: Q \rightarrow \mathbb{R}
\end{gathered}
$$

$A(w)= \begin{cases}\text { Acc } & \text { if } \hat{\delta}_{Q}(w) \in F \\ \text { Rej, } & \text { else }\end{cases}$

WFA
weighted

$$
A=\left\langle\Sigma, Q, \alpha, \beta,\left\{W_{\sigma}\right\}_{\sigma \in \Sigma}\right\rangle
$$

$$
\alpha: Q \rightarrow \mathbb{R}
$$

$$
\beta: Q \rightarrow \mathbb{R}
$$

$$
W_{\sigma} \in \mathbb{R}^{Q \times Q}
$$

$$
A(w)=\alpha \cdot W_{w_{1}} \cdot W_{w_{2}} \cdot \ldots \cdot W_{w_{|w|}} \cdot \beta
$$

Extraction WFAs

Learning
Regular Trees
Sakakibara (1992)
Högberg (2007)

Regular Trees

RNNs: Extracting WFAs: Background!

 Spectral Learning of WFAs
RNNs: Extracting WFAs: Background!

Spectral Learning of WFAs

A spectral algorithm for learning hidden
Markov models
Hsu et al, 2008

Grammatical inference as a principal component analysis problem
Bailly et al, 2009

Spectral learning of weighted automata - A forward-backward perspective

Balle et al, 2013

RNNs: Extracting WFAs: Background!

Spectral Learning of WFAs $\quad T=\left\langle\Sigma, Q, \alpha^{G}, \beta^{G},\left\langle\left. W_{\sigma}^{G}\right|_{\sigma \varepsilon \varepsilon}\right\rangle\right.$
(example on $\Sigma=\{a, b\}$)

A spectral algorithm for learning hidden Markov models

Hsu et al, 2008

Grammatical inference as a principal component analysis problem
Bailly et al, 2009

Spectral learning of weighted automata - A forward-backward perspective

Balle et al, 2013

RNNs: Extracting WFAs: Background!

Spectral Learning of WFAs

1. Make Hankel Sub-blocks

$$
T=\left\langle\Sigma, Q, \alpha^{G}, \beta^{G},\left\{W_{\sigma}^{G}\right\}_{\sigma \in \Sigma}\right\rangle
$$

(example on $\Sigma=\{a, b\}$)
Hankel sub-block H

A spectral algorithm for learning hidden Markov models

Hsu et al, 2008

Grammatical inference as a principal component analysis problem
Bailly et al, 2009

Spectral learning of weighted automata - A forward-backward perspective

Balle et al, 2013

RNNs: Extracting WFAs: Background!

Spectral Learning of WFAs $\quad T=\left\langle\tau, Q, \alpha^{G}, \beta^{G},\left\{\left.W_{\sigma}^{G}\right|_{\sigma \in \Sigma}\right\rangle\right.$

1. Make Hankel Sub-blocks

Hankel sub-block H

\mathbf{p}	\boldsymbol{E}	\boldsymbol{b}	$\boldsymbol{a b}$	\cdots	\boldsymbol{v}
$\boldsymbol{\mathcal { E }}$	$T(\varepsilon)$	$T(b)$	$T(a b)$		$T(v)$
\boldsymbol{a}	$T(a)$	$T(a b)$	$T(a a b)$		$T(a \cdot v)$
$\boldsymbol{a} \boldsymbol{b}$	$T(a b$	$T(a b b)$	$T(a b a b)$		$T(a b \cdot v)$
\cdots					
\boldsymbol{U}	$T(u)$	$T(u \cdot b)$	$T(u \cdot a b)$		$T(u \cdot v)$

Hankel sub-block H^{a}

(example on $\Sigma=\{a, b\}$)

A spectral algorithm for learning hidden Markov models

Hsu et al, 2008

Grammatical inference as a principal component analysis problem
Bailly et al, 2009

Spectral learning of weighted automata - A forward-backward perspective

Balle et al, 2013

RNNs: Extracting WFAs: Background!

Spectral Learning of WFAs $\quad T=\left\langle\tau, Q, \alpha^{G}, \beta^{G},\left\{\left.W_{\sigma}^{G}\right|_{\sigma \in \Sigma}\right\rangle\right.$

1. Make Hankel Sub-blocks

Hankel sub-block H

\mathbf{P}	\boldsymbol{E}	\boldsymbol{b}	$\boldsymbol{a b}$	\cdots	\boldsymbol{v}
$\boldsymbol{\mathcal { E }}$	$T(\varepsilon)$	$T(b)$	$T(a b)$		$T(v)$
\boldsymbol{a}	$T(a)$	$T(a b)$	$T(a a b)$		$T(a \cdot v)$
$\boldsymbol{a} \boldsymbol{b}$	$T(a b$	$T(a b b)$	$T(a b a b)$		$T(a b \cdot v)$
\cdots					
\boldsymbol{U}	$T(u)$	$T(u \cdot b)$	$T(u \cdot a b)$		$T(u \cdot v)$

Hankel sub-block H^{b}

2. $U, d, V=\operatorname{SVD}(H)$
3. (Optional): Trim U, d, V to k largest singular values
4. $\alpha=H_{\varepsilon,:} V, \beta=(H V)^{\dagger} H_{:, \varepsilon}$,

$$
W_{\sigma}=(H V)^{\dagger} H^{\sigma} V
$$

5. $\quad A=\left\langle\Sigma,[k], \alpha, \beta,\left\{W_{\sigma}\right\}_{\sigma \in \Sigma}\right\rangle$

A spectral algorithm for learning hidden Markov models

Hsu et al, 2008

Grammatical inference as a principal component analysis problem
Bailly et al, 2009

Spectral learning of weighted automata - A forward-backward perspective

Balle et al, 2013

RNNs: Extracting WFAs: Background!

Spectral Learning of WFAs
 $$
T=\left\langle\Sigma, Q, \alpha^{G}, \beta^{G},\left\{W_{\sigma}^{G}\right\}_{\sigma \in \Sigma}\right\rangle
$$

1. Make Hankel Sub-blocks

Hankel sub-block H

\mathbf{P}	\boldsymbol{E}	\boldsymbol{b}	$\boldsymbol{a b}$	\cdots	\boldsymbol{v}
$\boldsymbol{\mathcal { E }}$	$T(\varepsilon)$	$T(b)$	$T(a b)$		$T(v)$
\boldsymbol{a}	$T(a)$	$T(a b)$	$T(a a b)$		$T(a \cdot v)$
$\boldsymbol{a} \boldsymbol{b}$	$T(a b$	$T(a b b)$	$T(a b a b)$		$T(a b \cdot v)$
\cdots					
\boldsymbol{U}	$T(u)$	$T(u \cdot b)$	$T(u \cdot a b)$		$T(u \cdot v)$

Hankel sub-block H^{b}

2. $U, d, V=\operatorname{SVD}(H)$
3. (Optional): $\operatorname{Trim} U, d, V$ to k largest singular values
4. $\alpha=H_{\varepsilon,:} V, \beta=(H V)^{\dagger} H_{:, \varepsilon}$, $W_{\sigma}=(H V)^{\dagger} H^{\sigma} V$
5. $A=\left\langle\Sigma,[k], \alpha, \beta,\left\{W_{\sigma}\right\}_{\sigma \in \Sigma}\right\rangle$

A spectral algorithm for learning hidden Markov models

Hsu et al, 2008

Grammatical inference as a principal component analysis problem
Bailly et al, 2009

Spectral learning of weighted automata - A forward-backward perspective

Balle et al, 2013

Learning Weighted Automata

Balle and Mohri, 2015

A Maximum Matching Algorithm for
Basis Selection in Spectral Learning

Extraction

Spectral Learning
Omlin and Giles (1995)
Blanco et al (2000)
Cechin et al (2003)
Hsu et al (2008), Bailly et al (2009),
Balle et al (2013)

WFAs

Quantisation +
Exploration of
RNNs, for WFAs
Zhang et al (2021)

Learning
Regular Trees
Sakakibara (1992)
Drewes and
Högberg (2007)

RNN s to DFAs:
L-star + Iterative Quantisation Weiss et al (2017)

RNNs to

RNNs to WFA: L-star +

 Spectral + Iterative
Extraction

 WFAsRegular Trees \leftrightarrow Visibly Pushdown

RNNs to DFAs: Quantisation Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

L-star
Angluin (1987)

Spectral Learning
Hsu et al (2008), Bailly et al (2009), Balle et al (2013)

RNNs to WFAs:
Spectral
Ayache et al (2018)

2-RNNs to WFAs:
Spectral
Rabusseau et al (2017)
Rabusseau et al (2019)

Learning Grammars

RNNs: Extracting WFAs: Spectral Methods

Explaining Black Boxes on Sequential Data
 Using Weighted Automata

Ayache et al, 2018

Black Box Model
Build Hankel basis (P,S) by sampling sequences according to black box's distribution
Try multiple sizes for final WFA (truncations k of SVD decomposition) and choose best result

Spectral Learning

Hsu et al (2008), Bailly et al (2009),
Balle et al. (2013)

RNNs: Extracting WFAs: Spectral Methods

Explaining Black Boxes on Sequential Data Using Weighted Automata

Ayache et al, 2018

Black Box Model
Build Hankel basis (P,S) by sampling sequences according to black box's distribution

Try multiple sizes for final WFA (truncations k of SVD decomposition) and choose best result

Weighted Automata Extraction from Recurrent Neural Networks via Regression on State Spaces

Okudono et al, 2019

White Box Model (specifically RNN)
Build Hankel basis (P,S) according to queries from and counterexamples to active learning algorithm

Continue until reach
equivalence

Spectral Learning

Hsu et al (2008), Bailly et al (2009), Balle et al. (2013)

Extraction

 WFAsRNNs to DFAs: Quantisation
Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

L-star
Angluin (1987)

Quantisation + Exploration of
RNNs, for WFAs
Zhang et al (2021)

Spectral Learning
Hsu et al (2008), Bailly et al (2009), Balle et al (2013)

Rabusseau et al (2017)
Rabusseau et al (2019)

Extraction

WFAs

RNNs to DFAs:

Quantisation
Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

L-star Angluin (1987)

Spectral Learning
Hsu et al (2008), Bailly et al (2009), Balle et al (2013)

2-RNNs to WFAs:
Spectral
Rabusseau et al (2017)
Rabusseau et al (2019)

Extraction

WFAs

RNNs to DFAs: Quantisation Zeng et al (1993), Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)
(295),
(2003),

Background: L*

Membership Equivalence CounterQueries Queries Examples

Background: L*

The Observation Table

\mathbf{P}	ε	a	$b a$
ε	$\mathbf{1}$	$\mathbf{1}$	0
a	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
b	$\mathbf{1}$	$\mathbf{0}$	0
$b a$	$\mathbf{0}$	$\mathbf{0}$	0
$b b$	1	0	0

Membership Equivalence CounterQueries Queries Examples

Background: L*

The Observation Table

Background: L*

The Observation Table

Background: L*

The Observation Table

Closedness

For all $p \in P$ and $\sigma \in \Sigma$, if we were to add $p \cdot \sigma$ to P, its row would be identical to that of some p^{\prime} already in P

Background: L*

The Observation Table

Closedness

For all $p \in P$ and $\sigma \in \Sigma$, if we were to add $p \cdot \sigma$ to P, its row would be identical to that of some p^{\prime} already in P

Background: L*

The Observation Table

Closedness

For all $p \in P$ and $\sigma \in \Sigma$, if we were to add $p \cdot \sigma$ to P, its row would be identical to that of some p^{\prime} already in P

Background: L*

The Observation Table

Consistency

For all $p_{1}, p_{2} \in P$ with identical rows, and all $\sigma \in \Sigma$, if we were to add $p_{1} \cdot \sigma$ and $p_{2} \cdot \sigma$ to P, their rows would be identical to each other

Background: L*

The Observation Table

Consistency

For all $p_{1}, p_{2} \in P$ with identical rows, and all $\sigma \in \Sigma$, if we were to add $p_{1} \cdot \sigma$ and $p_{2} \cdot \sigma$ to P, their rows would be identical to each other

Background: L*

The Observation Table

Equivalence Query

Background: L*

The Observation Table

\mathbf{P}	\mathcal{E}
\mathcal{E}	1
a	1
b	1

Equivalence Query

Each group of identical rows describes a single state

Background: L*

The Observation Table

Equivalence
Query

Background: L*

The Observation Table

\mathbf{P}	\mathcal{E}
\mathcal{E}	1
a	1
b	1

Equivalence
Query

Background: L*

The Observation Table

(this is simplified: it also adds to S)
Equivalence Query

Background: L*

The Observation Table

\mathbf{S}	ε
ε	1
a	1
b	1
$b a$	0

Equivalence
Query

Background: L*

The Observation Table

Equivalence
Query

Background: L*

The Observation Table

Equivalence
Query

Background: L*

The Observation Table

Consistency

For all $p_{1}, p_{2} \in P$ with identical rows, and all $\sigma \in \Sigma$, if we were to add $p_{1} \cdot \sigma$ and $p_{2} \cdot \sigma$ to P, their rows would be identical to each other

Background: L*

The Observation Table

Background: L*

The Observation Table

Background: L*

The Observation Table

Background: L*

The Observation Table

Background: L*

The Observation Table

Consistency

For all $p_{1}, p_{2} \in P$ with identical rows, and all $\sigma \in \Sigma$, if we were to add $p_{1} \cdot \sigma$ and $p_{2} \cdot \sigma$ to P, their rows would be identical to each other

Background: L*

The Observation Table

Extraction

WFAs

Regular Trees

Pushdown Automata
 Barbot et al (2021)

RNNs, for WFAs
Zhang et al (2021)

RNNs to CFGs:
Trees, then Visibly
Learning Grammars

Extraction

WFAs

RNNs to DFAs:
Quantisation
Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

RNNs to WFA: L-star + Spectral + Iterative

 QuantisationOkudono et al (2019)

Extraction

WFAs

RNNs to DFAs:
Quantisation
Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

L-star Angluin (1987)

Regular Trees

Pushdown Automata

Barbot et al (2021)

Adapting L*

The Observation Table

\mathbf{P}	\mathcal{E}	a
ε	$?$	$?$
a	$?$	$?$
b	$?$	$?$
$b a$	$?$	$?$

RNN, trained on

there may be some noise...

What shall we put in the table?

Adapting L*

The Observation Table

\mathbf{P}	\mathcal{E}	a
\mathcal{E}	$?$	$?$
a	$?$	$?$
b	$?$	$?$
$b a$	$?$	$?$

Direct approach: Full sequence weight
Flaw: Will quickly degrade Intuition: Conditional probabilities
Flaw: Also degrade as S grows
Fix: Last token probabilities

Adapting L*

The Observation Table

\mathbf{P}	ε	a
ε	$?$	$?$
a	$?$	$?$
b	$?$	$?$
$b a$	$?$	$?$

Final Choice: Last Token Probabilities

Adapting L*

The Observation Table

\mathbf{P}	ε	a
ε	$?$	0.5
a	$?$	0.7
b	$?$	0.5
$b a$	$?$	0.5

Final Choice: Last Token Probabilities Realisation:
empty suffix doesn't mean anything anymore...

Adapting L*

The Observation Table

\mathbf{P}	$\$$	a
ε	0.1	0.5
a	0.05	0.7
b	0.1	0.5
$b a$	0.1	0.5

Final Choice: Last Token Probabilities

Realisation:

empty suffix doesn't mean anything anymore... but end-of-sequence does

Adapting L*

The Observation Table

\mathbf{P}	$\$$	a
ε	0.1	0.5
a	0.05	0.7
b	0.1	0.5
$b a$	0.1	0.5

RNN, trained on

there may be some noise...

What shall we put in the table?

Final Choice: Last Token Probabilities
Okay, we have our adaptation. Let's go!?

Adapting L*

The Observation Table

\mathbf{S}	$\$$	a
$\boldsymbol{\varepsilon}$	0.1	0.5
a	0.05	0.7
b	0.1	0.5
$b a$	0.1	0.5

RNN, trained on

What shall we put in the table?

Final Choice: Last Token Probabilities

Adapting L*

The Observation Table

\mathbf{P}	$\$$	a
ε	0.1	0.5
a	0.05	0.7
b	0.1	0.5
$b a$	0.1	0.5

Final Choice: Last Token Probabilities
Nice Realisation: Can use additive tolerance

Adapting L*

The Observation Table

\mathbf{P}	$\$$	a
ε	0.1	0.5
a	0.05	0.7
b	0.1	0.5
$b a$	0.1	0.5

RNN, trained on

there may be some noise...

What shall we put in the table?

Final Choice: Last Token Probabilities
Nice Realisation: Can use additive tolerance
Challenge: Non-transitivity of tolerance

Adapting L*

The Observation Table

\mathbf{S}	$\$$	a
ε	0.1	0.5
a	0.05	0.7
b	0.1	0.5
$b a$	0.1	0.5

RNN, trained on

there may be some noise...

Final Choice: Last Token Probabilities Nice Realisation: Can use additive tolerance

Challenge: Non-transitivity of tolerance

Adapting L*

Dealing with the Additive Tolerance

In particular: dealing with 'chains' of similar prefixes

Adapting L*

Dealing with the Additive Tolerance

In particular: dealing with 'chains' of similar prefixes

Adapting L*

Dealing with the Additive Tolerance

In particular: dealing with 'chains' of similar prefixes

Immediate realisation: Attempting to fix definitions for table is painful

Adapting L*

Dealing with the Additive Tolerance
In particular: dealing with 'chains' of similar prefixes
Immediate realisation: Attempting to fix definitions for table is painful

Solution:

Fill table optimistically, and fix problems post-hoc

Adapting L*

Optimistic Table and Post-Hoc Fixes

Adapting L*

Optimistic Table and Post-Hoc Fixes

1. Check closedness as normal, just with the additive tolerance
2. Check consistency as normal, just with the additive tolerance
3. Make hypothesis with caution!

Adapting L*

Optimistic Table and Post-Hoc Fixes

3. Make hypothesis with caution!

Potential Problems:

1. Clustering of prefixes causes states with non-deterministic transitions

post hoc fix: refine

2. Clustering of prefixes creates states with prefixes beyond threshold of each other

Anytime Stopping

This algorithm is unlikely to complete on realworld tasks. Thus, we allow anytime stopping:

- Prioritise high-weight prefixes
- Avoid very low-weight separating suffixes
- On stop, map remaining prefixes to best match
- This is actually quite slow, and might not be very beneficial (needs to be tested!)

Extraction

WFAs

RNNs to DFAs:
Quantisation
Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

L-star Angluin (1987)

Regular Trees

Pushdown Automata

Barbot et al (2021)

Extraction

WFAs

RNNs to DFAs:
Quantisation
Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

RNNs to WFA: L-star + Spectral + Iterative

 QuantisationOkudono et al (2019)

Extraction

WFAs

Quantisation + Exploration of
RNNs, for WFAs Zhang et al (2021)

Regular Trees

RNNs to DFAs:
Quantisation
Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

Extraction WFAs

Learning
Regular Trees
Sakakibara (1992)
Högberg (2007)

Regular Trees

Extraction

CFGs

Extraction

CFGs

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Observation: L-star learning a CFG seems to have structured increases (example on balanced parentheses)

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Observation: L-star learning a CFG seems to have structured increases (example on balanced parentheses)

1. In the limit, the union of all DFAs in this sequence accepts the non-regular language BP

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Observation: L-star learning a CFG seems to have structured increases (example on balanced parentheses)

1. In the limit, the union of all DFAs in this sequence accepts the non-regular language BP
2. The difference between each pair of successive RNNs is structured (for some CFGs at least)

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Observation: L-star learning a CFG seems to have structured increases (example on balanced parentheses)

RNNs: Extraction: CFGs: Pattern Rule Sets

 Yellin and Weiss (2021)
Patterns

RNNs: Extraction: CFGs: Pattern Rule Sets

 Yellin and Weiss (2021)
Patterns

- Structure

RNNs: Extraction: CFGs: Pattern Rule Sets

 Yellin and Weiss (2021)
Patterns

- Structure
- Entry

RNNs: Extraction: CFGs: Pattern Rule Sets

 Yellin and Weiss (2021)
Patterns

- Structure
- Entry
- Exit

RNNs: Extraction: CFGs: Pattern Rule Sets

 Yellin and Weiss (2021)
Patterns

- Structure
- Entry
- Exit
- Connection Point(s)

RNNs: Extraction: CFGs: Pattern Rule Sets

 Yellin and Weiss (2021)
Patterns

- Structure
- Entry
- Exit
- Connection Point(s)
- Composable
- Connection points are on compositions

RNNs: Extraction: CFGs: Pattern Rule Sets

 Yellin and Weiss (2021)
Patterns

- Structure
- Entry
- Exit
- Connection Point(s)
- Composable
- Connection points are on compositions
- Composition can be serial or circular

RNNs: Extraction: CFGs: Pattern Rule Sets

 Yellin and Weiss (2021)
Patterns

- Structure
- Entry
- Exit
- Connection Point(s)

- Composable
- Connection points are on compositions
- Composition can be serial or circular

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Rules

Rules describe how specific patterns initiate and expand the DFAs. There are three types:

1. The first DFA: an initial pattern p_{I}. 2. Insert circular pattern p_{1} on join state of p_{2}. 3 . Insert serial pattern p_{1} on join state of serial pattern p_{2}

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Rules

Rules describe how specific patterns initiate and expand the DFAs. There are three types:

1. The first DFA: an initial pattern p_{I}. 2. Insert circular pattern p_{1} on join state of p_{2}. 3. Insert serial pattern p_{1} on join state of serial pattern p_{2}

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Rules

Rules describe how specific patterns initiate and expand the DFAs. There are three types:

1. The first DFA: an initial pattern p_{I}. 2. Insert circular pattern p_{1} on join state of p_{2}. 3. Insert serial pattern p_{1} on join state of serial pattern p_{2}
(When we get to extraction:
this might not be the same
first DFA that L-star suggests)

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Rules

Rules describe how specific patterns initiate and expand the DFAs. There are three types:

1. The first DFA: an initial pattern $p_{I} .2$. Insert circular pattern p_{1} on join state of $p_{2} .3$. Insert serial pattern p_{1} on join state of serial pattern p_{2}
(i)

(ii)

$$
p 1 \circ p 2 \rightarrow c(p 1 \circ p 2)<p 3
$$

$$
\mathrm{p} 1 o_{c} p 2 \rightarrow_{c}\left(p 1 o_{c} p 2 b=p 3\right.
$$

exit state

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Rules

Rules describe how specific patterns initiate and expand the DFAs. There are three types:

1. The first DFA: an initial pattern $p_{I} .2$. Insert circular pattern p_{1} on join state of $p_{2} .3$. Insert serial pattern p_{1} on join state of serial pattern p_{2}
(i)

$$
p 1 \circ p 2 \rightarrow c(p 1 \circ p 2)=p 3
$$

(ii)
 $\mathrm{p} 1 \mathrm{o}_{\mathrm{c}} \mathrm{p} 2 \rightarrow_{\mathrm{c}}\left(\mathrm{p} 1 \mathrm{o}_{\mathrm{c}} \mathrm{p} 2 \mathrm{~b}=\mathrm{p} 3\right.$

What happens when adding another (different) circular pattern to the same state?exit state
join state
"\#".".- transitions added to successor DFA

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Rules

Rules describe how specific patterns initiate and expand the DFAs. There are three types:

1. The first DFA: an initial pattern $p_{I} .2$. Insert circular pattern p_{1} on join state of $p_{2} .3$. Insert serial pattern p_{1} on join state of serial pattern p_{2}
(i)

(ii)

$$
p 1 \circ p 2 \rightarrow c(p 1 \circ p 2)=p 3
$$

$$
\mathrm{p} 1 \mathrm{o}_{\mathrm{c}} \mathrm{p} 2 \rightarrow_{\mathrm{c}}\left(\mathrm{p} 1 \mathrm{o}_{\mathrm{c}} \mathrm{p} 2 \mathrm{~b}=\mathrm{p} 3\right.
$$

What happens when adding another (different) circular pattern to the same state?
\square initial stateexit state
join state

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Rules

Rules describe how specific patterns initiate and expand the DFAs. There are three types:

1. The first DFA: an initial pattern p_{I}. 2. Insert circular pattern p_{1} on join state of p_{2}. 3 . Insert serial pattern p_{1} on join state of serial pattern p_{2}

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Rules

Rules describe how specific patterns initiate and expand the DFAs. There are three types:

1. The first DFA: an initial pattern p_{I}. 2. Insert circular pattern p_{1} on join state of p_{2}. 3. Insert serial pattern p_{1} on join state of serial pattern p_{2}

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Rules

Rules describe how specific patterns initiate and expand the DFAs. There are three types:

1. The first DFA: an initial pattern p_{I}. 2. Insert circular pattern p_{1} on join state of p_{2}. 3. Insert serial pattern p_{1} on join state of serial pattern p_{2}

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Rules

Rules describe how specific patterns initiate and expand the DFAs. There are three types:

1. The first DFA: an initial pattern p_{I}. 2. Insert circular pattern p_{1} on join state of p_{2}. 3. Insert serial pattern p_{1} on join state of serial pattern p_{2}

What happens when adding another (different) serial pattern to the same state?

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Rules

Rules describe how specific patterns initiate and expand the DFAs. There are three types:

1. The first DFA: an initial pattern p_{I}. 2. Insert circular pattern p_{1} on join state of $p_{2} .3$. Insert serial pattern p_{1} on join state of serial pattern p_{2}

What happens when adding another (different) serial pattern to the same state?
"\#"."." transitions added to successor DFA

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Rules

Rules describe how specific patterns initiate and expand the DFAs. There are three types:

1. The first DFA: an initial pattern p_{I}. 2. Insert circular pattern p_{1} on join state of $p_{2} .3$. Insert serial pattern p_{1} on join state of serial pattern p_{2}

What happens when adding another (different) serial pattern to the same state?

RNNs: Extraction: CFGs: Pattern Rule Sets Yellin and Weiss (2021)

Rules

Rules describe how specific patterns initiate and expand the DFAs. There are three types:

1. The first DFA: an initial pattern p_{I}. 2. Insert circular pattern p_{1} on join state of p_{2}. 3 . Insert serial pattern p_{1} on join state of serial pattern p_{2}
(i)

$$
p 1 \circ p 2 \rightarrow c(p 1 \circ p 2) \circ p=p
$$

(ii)

 $\mathrm{p} 1 \mathrm{o}_{\mathrm{c}} \mathrm{p} 2 \rightarrow_{\mathrm{c}}\left(\mathrm{p} 1 \mathrm{o}_{\mathrm{c}} \mathrm{p} 2 \mathrm{~b}=\mathrm{p} 3\right.$

Legend:
initial state
(||l|) exit state

- join state

RNNs: Extraction: CFGs: Pattern Rule Sets

 Yellin and Weiss (2021)Recovering a Pattern Rule Set

RNNs: Extraction: CFGs: Pattern Rule Sets

Yellin and Weiss (2021)

Recovering a Pattern Rule Set

1. Identify (some of) the patterns: the new states between consecutive RNNs
2. (Note that reject state is treated as not there)

RNNs: Extraction: CFGs: Pattern Rule Sets

Yellin and Weiss (2021)

Recovering a Pattern Rule Set

1. Identify (some of) the patterns: the new states between consecutive RNNs
2. (Note that reject state is treated as not there)

RNNs: Extraction: CFGs: Pattern Rule Sets

Yellin and Weiss (2021)
 Recovering a Pattern Rule Set

1. Identify (some of) the patterns: the new states between consecutive RNNs
2. (Note that reject state is treated as not there)
3. Identify composite patterns: patterns onto which other patterns have been grafted in some of the expansions

RNNs: Extraction: CFGs: Pattern Rule Sets

Yellin and Weiss (2021)

Recovering a Pattern Rule Set

1. Identify (some of) the patterns: the new states between consecutive RNNs
2. (Note that reject state is treated as not there)
3. Identify composite patterns: patterns onto which other patterns have been grafted in some of the expansions

RNNs: Extraction: CFGs: Pattern Rule Sets

Yellin and Weiss (2021)

Recovering a Pattern Rule Set

1. Identify (some of) the patterns: the new states between consecutive RNNs
2. (Note that reject state is treated as not there)
3. Identify composite patterns: patterns onto which other patterns have been grafted in some of the expansions
4. Split composite patterns into base patterns according to observed join state.
5. Record which pattern was grafted on - i.e., which rule was used.

RNNs: Extraction: CFGs: Pattern Rule Sets

Yellin and Weiss (2021)

Recovering a Pattern Rule Set

1. Identify (some of) the patterns: the new states between consecutive RNNs
2. (Note that reject state is treated as not there)
3. Identify composite patterns: patterns onto which other patterns have been grafted in some of the expansions
4. Split composite patterns into base patterns according to observed join state.
5. Record which pattern was grafted on - i.e., which rule was used.
6. To handle noise: have threshold, and only keep patterns and rules that have frequency above that threshold

RNNs: Extraction: CFGs: Pattern Rule Sets

Yellin and Weiss (2021)

Recovering a Pattern Rule Set

1. Identify (some of) the patterns: the new states between consecutive RNNs
2. (Note that reject state is treated as not there)
3. Identify composite patterns: patterns onto which other patterns have been grafted in some of the expansions
4. Split composite patterns into base patterns according to observed join state.
5. Record which pattern was grafted on - i.e., which rule was used.
6. To handle noise: have threshold, and only keep patterns and rules that have frequency above that threshold
```
4. Convert PRS to CFG!
```


Extraction

Quantisation + Exploration of
RNNs, for WFAs
Zhang et al (2021)

Learning Regular Trees Sakakibara (1992)

Drewes and Högberg (2007)

Regular Trees
\leftrightarrow Visibly Pushdown
Automata
Alur and Madhusudan (2004)

RNNs to DFAs:
Quantisation
Zeng et al (1993),
Omlin and Giles (1995), Blanco et al (2000), Cechin et al (2003)

RNNs to DFAs:
L-star + Iterative Quantisation Weiss et al (2017)

RNNs to
DFAs: L-star Mayr and Yovine (2018)

L-star
Angluin (1987)

Overview

Recurrent Neural Networks (RNNs)

- Introduction
- RNN-Automata relation
- Extraction
- DFAs
- WFAs
- More
- Analysis

Transformers

- Introduction
- A formal abstraction

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

LSTMs

Hochreiter and
GRUs Schmidhuber 1997

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

RNNs are like DFAs
Cleeremans et al 1989

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

LSTMs

Hochreiter and
Schmidhuber 1997

GRUs

Cho et al 2014, Chung et al 2014

RNNs are like DFAs
Cleeremans et al 1989

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

LSTMs

 Hochreiter and
GRUs

Cho et al 2014, Chung et al 2014

RNNs are like DFAs

Cleeremans et al 1989

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

GRUs

Cho et al 2014,
Chung et al 2014

RNNs are like DFAs

Cleeremans et al 1989

RNNs Turing Complete
Siegelman and Sonntag 1995
LSTMs can count/learn simple CFGs Gers and Schmidhuber 2001

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

RNNs: Expressive Power: Theory

RNNs are Turing Complete:

Given infinite precision, RNNs can emulate pushing and popping to/from stacks in their hidden state.
Thus, given also infinite time, they can simulate any
Turing Machine
On the computational power of Neural Nets
Siegelmann and Sonntag (1995)

RNNs: Expressive Power: Theory

RNNs are Turing Complete:

Given infinite precision, RNNs can emulate pushing and popping to/from stacks in their hidden state.
Thus, given also infinite time, they can simulate any
Turing Machine
On the computational power of Neural Nets
Siegelmann and Sonntag (1995)

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

GRUs
Cho et al 2014,
Chung et al 2014

RNNs are like DFAs
 Cleeremans et al 1989

RNNs Turing Complete
Siegelman and Sonntag 1995

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

GRUs
Cho et al 2014,
Chung et al 2014

RNNs are like DFAs
 Cleeremans et al 1989

RNNs Turing Complete
Siegelman and Sonntag 1995
LSTMs can count/learn
simple CFGs
Gers and Schmidhuber 2001

RNNs: Expressive Power: Practice LSTMs can count

LSTM recurrent networks learn simple context-free and context-sensitive languages Gers and Schmidhuber, 2001

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

GRUs
Cho et al 2014,
Chung et al 2014

RNNs are like DFAs
 Cleeremans et al 1989

RNNs Turing Complete
Siegelman and Sonntag 1995
LSTMs can count/learn
simple CFGs
Gers and Schmidhuber 2001

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

GRUs
Cho et al 2014,
Chung et al 2014

RNNs are like DFAs
 Cleeremans et al 1989

RNNs Turing Complete
Siegelman and Sonntag 1995
LSTMs can count/learn
simple CFGs
Gers and Schmidhuber 2001

LSTMs: Counting Mechanism

$$
\text { Simple RNN } \quad h_{t+1}=\tanh \left(W^{h} h_{t}+W^{x} x_{t}+b\right) \quad \text { Elman (1990) }
$$

LSTMs: Counting Mechanism

$$
\text { Simple RNN } \quad h_{t+1}=\tanh \left(W^{h} h_{t}+W^{x} x_{t}+b\right) \quad \text { Elman (1990) }
$$

LSTMs: Counting Mechanism

$$
\text { Simple RNN } \quad h_{t+1}=\tanh \left(W^{h} h_{t}+W^{x} x_{t}+b\right) \quad \text { Elman (1990) }
$$

GRU

$z_{t}=\sigma\left(W^{z} x_{t}+U^{z} h_{t-1}+b^{z}\right)$
$r_{t}=\sigma\left(W^{r} x_{t}+U^{r} h_{t-1}+b^{r}\right)$
$\tilde{h}_{t}=\tanh \left(W^{h} x_{t}+U^{h}\left(r_{t} \circ h_{t-1}\right)+b^{h}\right)$
$h_{t}=z_{t} \circ h_{t-1}+\left(1-z_{t}\right) \circ \tilde{h}_{t}$
Cho et al (2014), Chung et al (2014)

LSTM

$$
\begin{aligned}
f_{t} & =\sigma\left(W^{f} x_{t}+U^{f} h_{t-1}+b^{f}\right) \\
i_{t} & =\sigma\left(W^{i} x_{t}+U^{i} h_{t-1}+b^{i}\right) \\
o_{t} & =\sigma\left(W^{o} x_{t}+U^{o} h_{t-1}+b^{o}\right) \\
\tilde{c}_{t} & =\tanh \left(W^{c} x_{t}+U^{c} h_{t-1}+b^{c}\right) \\
c_{t} & =f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t} \\
h_{t} & =o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

Hochreiter and Schmidhuber (1997)

LSTMs: Counting Mechanism LSTMs can count (and GRUs cannot) GRU

LSTM

$$
\begin{aligned}
& z_{t}=\sigma\left(W^{z} x_{t}+U^{z} h_{t-1}+b^{z}\right) \\
& r_{t}=\sigma\left(W^{r} x_{t}+U^{r} h_{t-1}+b^{r}\right) \\
& \tilde{h}_{t}=\tanh \left(W^{h} x_{t}+U^{h}\left(r_{t} \circ h_{t-1}\right)+b^{h}\right) \\
& h_{t}=z_{t} \circ h_{t-1}+\left(1-z_{t}\right) \circ \tilde{h}_{t}
\end{aligned} \quad \begin{aligned}
& f_{t}=\sigma\left(W^{f} x_{t}+U^{f} h_{t-1}+b^{f}\right) \\
& i_{t}=\sigma\left(W^{i} x_{t}+U^{i} h_{t-1}+b^{i}\right) \\
& o_{t}=\sigma\left(W^{o} x_{t}+U^{o} h_{t-1}+b^{o}\right) \\
& \tilde{c}_{t}=\tanh \left(W^{c} x_{t}+U^{c} h_{t-1}+b^{c}\right) \\
& c_{t}=f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t} \\
& h_{t}=o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

LSTMs: Counting Mechanism LSTMs can count (and GRUs cannot) GRU
 LSTM

$$
\begin{array}{lll}
z_{t} \in(0,1) \\
r_{t} \in(0,1) \\
\tilde{h}_{t}=\tanh \left(W^{h} x_{t}+U^{h}\left(r_{t} \circ h_{t-1}\right)+b^{h}\right) \\
h_{t}=z_{t} \circ h_{t-1}+\left(1-z_{t}\right) \circ \tilde{h}_{t}
\end{array} \quad \begin{aligned}
& f_{t} \in(0,1) \\
& i_{t} \in(0,1) \\
& o_{t} \in(0,1)
\end{aligned}
$$

LSTMs: Counting Mechanism
 LSTMs can count (and GRUs cannot) GRU
 LSTM

$$
\begin{aligned}
& z_{t} \in(0,1) \\
& r_{t} \in(0,1) \\
& \tilde{h}_{t} \in(-1,1) \\
& h_{t}=z_{t} \circ h_{t-1}+\left(1-z_{t}\right) \circ \tilde{h}_{t}
\end{aligned} \quad \begin{aligned}
& f_{t} \in(0,1) \\
& i_{t} \in(0,1) \\
& o_{t} \in(0,1)
\end{aligned} \quad \begin{aligned}
& \tilde{c}_{t} \in(-1,1)
\end{aligned}
$$

LSTMs: Counting Mechanism

LSTMs can count (and GRUs cannot) GRU

$$
\begin{aligned}
& z_{t} \in(0,1) \\
& r_{t} \in(0,1) \\
& \tilde{h}_{t} \in(-1,1) \\
& h_{t}=z_{t} \circ h_{t-1}+(1-z) \circ \tilde{h}_{t}
\end{aligned}
$$

$$
\begin{aligned}
f_{t} & \in(0,1) \\
i_{t} & \in(0,1) \\
o_{t} & \in(0,1) \\
\tilde{c}_{t} & \in(-1,1) \\
c_{t} & =f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t} \\
h_{t} & =o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

LSTMs: Counting Mechanism
 LSTMs can count (and GRUs cannot) GRU
 LSTM

$$
\begin{aligned}
z_{t} & \in(0,1) \\
r_{t} & \in(0,1) \\
\tilde{h}_{t} & \in(-1,1) \\
h_{t} & =z_{t} \circ h_{t-1}+(1-z) \circ \tilde{h}_{t}
\end{aligned}
$$

Interpolation

$$
\begin{aligned}
& f_{t} \in(0,1) \\
& i_{t} \in(0,1) \\
& o_{t} \in(0,1) \\
& \tilde{c}_{t} \in(-1,1) \\
& c_{t}=f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t} \\
& h_{t}=o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

LSTMs: Counting Mechanism
 LSTMs can count (and GRUs cannot) GRU
 LSTM

$z_{t} \in(0,1)$
$r_{t} \in$ Bounded!
$\tilde{h}_{t} \in(-1,1)$
$h_{t}=z_{t} \circ h_{t-1}+(1-z) \circ \tilde{h}_{t}$

Interpolation

$$
\begin{aligned}
& f_{t} \in(0,1) \\
& i_{t} \in(0,1) \\
& o_{t} \in(0,1) \\
& \tilde{c}_{t} \in(-1,1) \\
& c_{t}=f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t} \\
& h_{t}=o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

LSTMs: Counting Mechanism
 LSTMs can count (and GRUs cannot) GRU
 LSTM

$$
\begin{aligned}
& z_{t} \in(0,1) \\
& r_{t} \in \text { Bounded! } \\
& \tilde{h}_{t} \in(-1,1) \\
& h_{t}=z_{t} \circ h_{t-1}+(1-z) \circ \tilde{h}_{t}
\end{aligned}
$$

$$
\begin{aligned}
& f_{t} \in(0,1) \\
& i_{t} \in(0,1) \\
& o_{t} \in(0,1) \\
& \tilde{c}_{t} \in(-1,1) \\
& c_{t}=f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t} \\
& h_{t}=o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

LSTMs: Counting Mechanism
 LSTMs can count (and GRUs cannot) GRU
 LSTM

$$
\begin{aligned}
& z_{t} \in(0,1) \\
& r_{t} \in \text { Bounded! } \\
& \tilde{h}_{t} \in(-1,1) \\
& h_{t}=z_{t} \circ h_{t-1}+(1-z) \circ \tilde{h}_{t}
\end{aligned}
$$

$$
\begin{aligned}
& f_{t} \in(0,1) \\
& i_{t} \in(0,1) \\
& o_{t} \in(0,1) \\
& \tilde{c}_{t} \in(-1,1) \\
& c_{t}=f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t} \\
& h_{t}=o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

Addition

LSTMs: Counting Mechanism
 LSTMs can count (and GRUs cannot) GRU
 LSTM

$z_{t} \in(0,1)$
$r_{t} \in$ Bounded!
$\tilde{h}_{t} \in(-1,1)$
$h_{t}=z_{t} \circ h_{t-1}+(1-z) \circ \tilde{h}_{t}$

Interpolation

$$
\begin{aligned}
& f_{t} \approx 1 \\
& i_{t} \approx 1 \\
& o_{t} \in(0,1) \\
& \tilde{c}_{t} \in(-1,1) \\
& c_{t} \approx c_{t-1}+\tilde{c}_{t} \\
& h_{t}=o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

Addition

$$
c_{t}=f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t}
$$

LSTMs: Counting Mechanism
 LSTMs can count (and GRUs cannot) GRU
 LSTM

$$
\begin{aligned}
& z_{t} \in(0,1) \\
& r_{t} \in \text { Bounded! } \\
& \tilde{h}_{t} \in(-1,1) \\
& h_{t}=z_{t} \circ h_{t-1}+(1-z) \circ \tilde{h}_{t}
\end{aligned}
$$

$$
\begin{aligned}
& f_{t} \approx 1 \\
& i_{t} \approx 1 \\
& o_{t} \in(0,1) \\
& \tilde{c}_{t} \approx 1 \\
& c_{t} \approx c_{t-1}+1 \\
& h_{t}=o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

Increase by 1

$$
c_{t}=f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t}
$$

LSTMs: Counting Mechanism
 LSTMs can count (and GRUs cannot) GRU
 LSTM

$$
\begin{aligned}
& z_{t} \in(0,1) \\
& r_{t} \in \text { Bounded! } \\
& \tilde{h}_{t} \in(-1,1) \\
& h_{t}=z_{t} \circ h_{t-1}+(1-z) \circ \tilde{h}_{t}
\end{aligned}
$$

$$
\begin{aligned}
& f_{t} \approx 1 \\
& i_{t} \approx 1 \\
& o_{t} \in(0,1) \\
& \tilde{c}_{t} \approx-1 \\
& c_{t} \approx c_{t-1}-1 \\
& h_{t}=o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

Decrease by 1

$$
c_{t}=f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t}
$$

LSTMs: Counting Mechanism
 LSTMs can count (and GRUs cannot) GRU
 LSTM

$z_{t} \in(0,1)$
$r_{t} \in$ Bounded!
$\tilde{h}_{t} \in(-1,1)$
$h_{t}=z_{t} \circ h_{t-1}+(1-z) \circ \tilde{h}_{t}$

Interpolation

$$
\begin{aligned}
& f_{t} \approx 1 \\
& i_{t} \approx 0 \\
& o_{t} \in(0,1) \\
& \tilde{c}_{t} \in(-1,1) \\
& c_{t} \approx c_{t-1} \\
& h_{t}=o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

Do Nothing

$$
c_{t}=f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t}
$$

LSTMs: Counting Mechanism
 LSTMs can count (and GRUs cannot) GRU
 LSTM

$z_{t} \in(0,1)$
$r_{t} \in$ Bounded!
$\tilde{h}_{t} \in(-1,1)$
$h_{t}=z_{t} \circ h_{t-1}+(1-z) \circ \tilde{h}_{t}$

Interpolation

$$
\begin{aligned}
& f_{t} \approx 0 \\
& i_{t} \approx 0 \\
& o_{t} \in(0,1) \\
& \tilde{c}_{t} \in(-1,1) \\
& c_{t} \approx 0 \\
& h_{t}=o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

Reset

$$
c_{t}=f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t}
$$

LSTMs: Counting Mechanism

LSTMs can count (and GRUs cannot)

GRU

LSTM

$$
\begin{aligned}
& z_{t} \in(0,1) \\
& r_{t} \in \text { Bounded! } \\
& \tilde{h}_{t} \in(-1,1) \\
& h_{t}=z_{t} \circ h_{t-1}+(1-z) \circ \tilde{h}_{t}
\end{aligned}
$$

Interpolation

$$
\begin{aligned}
& f_{t} \approx 0 \\
& i_{t} \approx 0 \\
& o_{t} \in \text { Can Count! } \\
& \tilde{c}_{t} \in(-1,1) \\
& c_{t} \approx 0 \\
& h_{t}=o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

Reset

$$
c_{t}=f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t}
$$

LSTMs: Counting Mechanism LSTMs can count (and GRUs cannot)

Trained $a^{n} b^{n}$, (on positive examples up to length 100)
Activations on $a^{1000} b^{1000}$:

LSTM

GRU

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

GRUs
Cho et al 2014,
Chung et al 2014

RNNs are like DFAs
 Cleeremans et al 1989

RNNs Turing Complete
Siegelman and Sonntag 1995
LSTMs can count/learn
simple CFGs
Gers and Schmidhuber 2001

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

GRUs

Cho et al 2014,
Chung et al 2014

RNNs are like DFAs

Cleeremans et al 1989

RNNs Turing Complete Siegelman and Sonntag 1995
LSTMs can count/learn
simple CFGs
Gers and Schmidhuber 2001

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

LSTMs

Hochreiter and

GRUs

Cho et al 2014,
Chung et al 2014

RNNs are like DFAs

Cleeremans et al 1989

RNNs Turing Complete Siegelman and Sonntag 1995

LSTMs can count/learn
 simple CFGs
 Gers and Schmidhuber 2001

Saturated RNNs

$$
\begin{aligned}
& f_{t}=\sigma\left(W^{f} x_{t}+U^{f} h_{t-1}+b^{f}\right) \\
& i_{t}=\sigma\left(W^{i} x_{t}+U^{i} h_{t-1}+b^{i}\right) \\
& o_{t}=\sigma\left(W^{o} x_{t}+U^{o} h_{t-1}+b^{o}\right)
\end{aligned}
$$

$$
\begin{gathered}
f_{t} \in(0,1) \\
i_{t} \in(0,1) \\
o_{t} \in(0,1)
\end{gathered}
$$

Saturated RNNs

$$
\begin{aligned}
f_{t} & =\sigma\left(W^{f} x_{t}+U^{f} h_{t-1}+b^{f}\right) \\
i_{t} & =\sigma\left(W^{i} x_{t}+U^{i} h_{t-1}+b^{i}\right) \\
o_{t} & =\sigma\left(W^{o} x_{t}+U^{o} h_{t-1}+b^{o}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{t} \in(0,1) \\
& i_{t} \in(0,1) \\
& o_{t} \in(0,1) \\
& \sigma: \mathbb{R} \rightarrow(0,1) \\
& \tanh : \mathbb{R} \rightarrow(-1,1)
\end{aligned}
$$

Saturated RNNs

$$
\begin{aligned}
f_{t} & =\sigma\left(W^{f} x_{t}+U^{f} h_{t-1}+b^{f}\right) \\
i_{t} & =\sigma\left(W^{i} x_{t}+U^{i} h_{t-1}+b^{i}\right) \\
o_{t} & =\sigma\left(W^{o} x_{t}+U^{o} h_{t-1}+b^{o}\right)
\end{aligned}
$$

$$
\begin{aligned}
f_{t} \approx 1 \\
i_{t} \approx 0 \\
o_{t} \in(0,1) \\
\sigma: \mathbb{R} \rightarrow(0,1) \\
\tanh : \mathbb{R} \rightarrow(-1,1)
\end{aligned}
$$

Saturated RNNs

$$
\begin{array}{rc}
f_{t}=\sigma\left(W^{f} x_{t}+U^{f} h_{t-1}+b^{f}\right) & f_{t} \approx 1 \\
i_{t}=\sigma\left(W^{i} x_{t}+U^{i} h_{t-1}+b^{i}\right) & i_{t} \approx 0 \\
o_{t}=\sigma\left(W^{o} x_{t}+U^{o} h_{t-1}+b^{o}\right) & o_{t} \in(0,1) \\
& \sigma: \mathbb{R} \rightarrow(0,1) \\
& \tanh : \mathbb{R} \rightarrow(-1,1)
\end{array}
$$

Saturated RNNs

Sequential Neural Networks as Automata - Merrill (2019)

$$
\begin{aligned}
f_{t} & =\sigma\left(W^{f} x_{t}+U^{f} h_{t-1}+b^{f}\right) \\
i_{t} & =\sigma\left(W^{i} x_{t}+U^{i} h_{t-1}+b^{i}\right) \\
o_{t} & =\sigma\left(W^{o} x_{t}+U^{o} h_{t-1}+b^{o}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{t} \approx 1 \\
& i_{t} \approx 0 \\
& o_{t} \in(0,1) \\
& \sigma: \mathbb{R} \rightarrow(0,1) \\
& \tanh : \mathbb{R} \rightarrow(-1,1)
\end{aligned}
$$

?

Saturated RNNs

Sequential Neural Networks as Automata - Merrill (2019)

$$
\begin{aligned}
f_{t}=\sigma\left(W^{f} x_{t}+U^{f} h_{t-1}+b^{f}\right) & f_{t} \approx 1 \\
i_{t}=\sigma\left(W^{i} x_{t}+U^{i} h_{t-1}+b^{i}\right) & i_{t} \approx 0 \\
o_{t}=\sigma\left(W^{t} x_{t}+U^{o} h_{t-1}+b^{o}\right) & o_{t} \in(0,1) \\
& \sigma: \mathbb{R} \rightarrow(0,1) \\
& \tanh : \mathbb{R} \rightarrow(-1,1)
\end{aligned}
$$

RNN is a parameterised function, $R(w: \theta)$
As θ "increases", inputs to activations increase, saturating them
Saturated RNN: $\operatorname{sat} R(w: \theta)=\lim _{N \rightarrow \infty} R(w: N \theta)$

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

LSTMs

Hochreiter and

GRUs

Cho et al 2014,
Chung et al 2014

RNNs are like DFAs

Cleeremans et al 1989

RNNs Turing Complete Siegelman and Sonntag 1995

LSTMs can count/learn
 simple CFGs
 Gers and Schmidhuber 2001

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

LSTMs

Hochreiter and
Schmidhuber 1997

GRUs

Cho et al 2014,
Chung et al 2014

RNNs are like DFAs

Cleeremans et al 1989

RNNs Turing Complete Siegelman and Sonntag 1995

LSTMs can count/learn
 simple CFGs
 Gers and Schmidhuber 2001

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

LSTMs

Hochreiter and
Schmidhuber 1997

GRUs

Cho et al 2014,
Chung et al 2014

RNNs are like DFAs

Cleeremans et al 1989

RNNs Turing Complete Siegelman and Sonntag 1995

LSTMs can count/learn
simple CFGs
Gers and Schmidhuber 2001

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

LSTMs

Hochreiter and
Schmidhuber 1997

GRUs

Cho et al 2014,
Chung et al 2014

RNNs are like DFAs

Cleeremans et al 1989

RNNs Turing Complete Siegelman and Sonntag 1995

LSTMs can count/learn
simple CFGs
Gers and Schmidhuber 2001

RNNs: Expressive Power

Simple RNNs
Elman 1990 (/1988)

LSTMs

Hochreiter and
Schmidhuber 1997

GRUs

Cho et al 2014,
Chung et al 2014

RNNs are like DFAs

Cleeremans et al 1989

RNNs Turing Complete Siegelman and Sonntag 1995

LSTMs can count/learn
simple CFGs
Gers and Schmidhuber 2001

Overview

Recurrent Neural Networks (RNNs)

- Introduction
- RNN-Automata relation
- Extraction
- DFAs
- WFAs
- More
- Analysis

Transformers

- Introduction
- A formal abstraction

Overview

Recurrent Neural Networks (RNNs)

- Introduction
- RNN-Automata relation
- Extraction
- DFAs
- WFAs
- More
- Analysis

Transformers

- Introduction
- A formal abstraction

Code!?

Overview

Recurrent Neural Networks (RNNs)

- Introduction
- RNN-Automata relation
- Extraction
- DFAs
- WFAs
- More
- Analysis

Transformer Encoders

- Introduction
- A formal abstraction

Didn’t make it! :(

But my website has links to talks on "Thinking Like Transformers", the work I wanted to introduce here:
https://sgailw.cswp.cs.technion.ac.il/publications/

The 1 hour talk includes an introduction on transformers, while the 5 minute talk assumes familiarity.

