
Thinking Like Transformers

Gail Weiss, Yoav Goldberg, Eran Yahav

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

?

Motivation: Transformer Encoders

Powerful!

Parallel!

Popular!

What are they doing?

Train fast on

massive data

What are they doing?

We’re figuring out all kinds of things…

Motivation: Transformer Encoders

What are they doing?

We’re figuring out all kinds of things…

…but it would be nice to have a model!

Motivation: Transformer Encoders

What are they doing?

We’re figuring out all kinds of things…

…but it would be nice to have a model!

Motivation: Transformer Encoders

What are they doing?

We’re figuring out all kinds of things…

…but it would be nice to have a model!

Motivation: Transformer Encoders

What are they doing?

We’re figuring out all kinds of things…

…but it would be nice to have a model!

Motivation: Transformer Encoders

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Extraction!

Computational
Model(s)!

Spectral extraction:

RNNs to WFAs

DFA extraction:

Clustering

DFA and WDFA extraction:

L-star variants

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Extraction! Analysis of Expressive Power!

Computational
Model(s)!

2-RNNs are WFAs

LSTMs are counter machines

GRUs are DFAs

Spectral extraction:

RNNs to WFAs

DFA extraction:

Clustering

DFA and WDFA extraction:

L-star variants

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Extraction! Analysis of Expressive Power! Inspiration from existing theory!

Computational
Model(s)!

Stack-RNNs2-RNNs are WFAs

LSTMs are counter machines

GRUs are DFAs

Spectral extraction:

RNNs to WFAs

DFA extraction:

Clustering

DFA and WDFA extraction:

L-star variants

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Extraction! Analysis of Expressive Power! Inspiration from existing theory!

Computational
Model(s)!

Transformer

Stack-RNNs2-RNNs are WFAs

LSTMs are counter machines

GRUs are DFAs

Spectral extraction:

RNNs to WFAs

DFA extraction:

Clustering

DFA and WDFA extraction:

L-star variants

Deterministic
Finite Automata (DFAs)

(References for the Interested)

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Extraction! Analysis of Expressive Power! Inspiration from existing theory!

Computational
Model(s)!

Explaining Black Boxes on

Sequential Data using Weighted Automata

Deterministic
Finite Automata (DFAs)

Extraction of Rules from Discrete-
Time Recurrent Neural Networks

Extracting Automata from Recurrent
Neural Networks Using Queries and

Counterexamples

Connecting Weighted Automata and
Recurrent Neural Networks through

Spectral Learning

On the Practical Computational
Power of Finite Precision RNNs for

Language Recognition

A Formal Hierarchy of RNN
Architectures

Sequential Neural Networks as
Automata

Inferring Algorithmic Patterns with
Stack-Augmented Recurrent Nets

Learning to Transduce with
Unbounded Memory

But what are Transformer-Encoders?

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Computational
Model(s)!

?
Any ideas?

Transformer-
Encoder

Transformer Encoders

Transformer Encoders

• Receive their entire input ‘at
once’, processing all tokens in
parallel

• Have multiple layers, such that
the output of one is the input of
the next

Transformer Encoders

• Receive their entire input ‘at
once’, processing all tokens in
parallel

• Have a fixed number of layers,
where the output of one is the
input of the next

The Transformer-Encoder

I

Like

Dogs

The Transformer-Encoder

Initial Encoding

x1

x2

x3

dx

I

Like

Dogs
Positional

Embedding

p(0)
p(1)
p(2)

dx

Word
Embedding

e(I)
e(Like)
e(dogs)

dx

The Transformer-Encoder

Encoder
Layer 1

Encoder
Layer L

Initial Encoding

x1

x2

x3

dx

Encoder Output

y1

y2

y3

dx

. . .

Layer 1 Output

y1

y2

y3

dx

I

Like

Dogs
Positional

Embedding

p(0)
p(1)
p(2)

dx

Word
Embedding

e(I)
e(Like)
e(dogs)

dx

Encoder
Layer 1

Encoder
Layer L

Initial Encoding

x1

x2

x3

dx

Encoder Output

y1

y2

y3

dx

. . .

Layer 1 Output

y1

y2

y3

dx

Does this thing have “states”?
What does it have?

The Transformer-Encoder

I

Like

Dogs
Positional

Embedding

p(0)
p(1)
p(2)

dx

Word
Embedding

e(I)
e(Like)
e(dogs)

dx

Encoder
Layer 1

Encoder
Layer L

Initial Encoding

x1

x2

x3

dx

Encoder Output

y1

y2

y3

dx

. . .

Layer 1 Output

y1

y2

y3

dx

No states… but there is a sense of
information being propagated

The Transformer-Encoder

I

Like

Dogs
Positional

Embedding

p(0)
p(1)
p(2)

dx

Word
Embedding

e(I)
e(Like)
e(dogs)

dx

Encoder
Layer 1

Encoder
Layer L

Initial Encoding

x1

x2

x3

dx

Encoder Output

y1

y2

y3

dx

. . .

Layer 1 Output

y1

y2

y3

dx

Layer input/outputs are “variables” of a transformer “program”
The layers themselves are “operations”

The Transformer-Encoder

I

Like

Dogs
Positional

Embedding

p(0)
p(1)
p(2)

dx

Word
Embedding

e(I)
e(Like)
e(dogs)

dx

So… a programming language?

RASP (Restricted Access Sequence Processing)

• A transformer-encoder is a sequence to sequence function (“sequence operator”, or, “s-op”)

• Its layers apply operations to the sequence

• RASP describes the input sequences and what the layers can do with them

RASP (Restricted Access Sequence Processing)

• A transformer-encoder is a sequence to sequence function (“sequence operator”, or, “s-op”)

• Its layers apply operations to the sequence

• RASP describes the input sequences and what the layers can do with them

I

Like

Dogs
Positional

Embedding

p(0)
p(1)
p(2)

dx

Word
Embedding

e(I)
e(Like)
e(dogs)

dx

RASP base s-ops
The information before a

transformer has done anything

(“0 layer transformer”)

I

Like

Dogs
Positional

Embedding

p(0)
p(1)
p(2)

dx

Word
Embedding

e(I)
e(Like)
e(dogs)

dx

RASP base s-ops
The information before a

transformer has done anything

(“0 layer transformer”)

tokens and indices are RASP built-ins:

The RASP REPL gives you
examples (until you ask it not to)

I

Like

Dogs
Positional

Embedding

p(0)
p(1)
p(2)

dx

Word
Embedding

e(I)
e(Like)
e(dogs)

dx tokens and indices are RASP built-ins:

The information before a
transformer has done anything

(“0 layer transformer”)

RASP base s-ops

Okay, now what?

To know what operations RASP may have, we must
inspect the transformer-encoder layers!

Transformer-Encoder Layer
Input

x1

x2

x3

dx

Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

Wff
1

 o′ 1

 o′ 2

 o′ 3

dx

 ff1
 ff2
 ff3

dff

Wff
2

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

ReLU

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer
There’s a lot in here…

Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

 o′ 1

 o′ 2

 o′ 3

dx

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Wff
1

 ff1
 ff2
 ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Input

x1

x2

x3

dx

Feed-Forward Sublayer

Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

 o′ 1

 o′ 2

 o′ 3

dx

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Wff
1

 ff1
 ff2
 ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Input

x1

x2

x3

dx

Feed-Forward Sublayer

Multilayer Feedforward Networks are
Universal Approximators (Hornik et al,

1989)

Feed-Forward gives us (Many) Elementwise
Operations

So far

Are we all-powerful
(well, transformer-powerful) yet?

Input

x1

x2

x3

dx

Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

Wff
1

 o′ 1

 o′ 2

 o′ 3

dx

 ff1
 ff2
 ff3

dff

Wff
2

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

ReLU

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer

Transformer-Encoder Layer

A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

 o′ 1

 o′ 2

 o′ 3

dx

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Wff
1

 ff1
 ff2
 ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Attention Sublayer
Multi-Head Attention

Input

x1

x2

x3

dx

elementwise

elementwise

Background - Multi Head Attention

Starting from single-head attention…

Background - Self Attention (Single Head)
input

 x1

 x2

 x3

dx

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

Background - Self Attention (Single Head)

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

Background - Self Attention (Single Head)

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

q1 ⋅ k1

Background - Self Attention (Single Head)

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

scores

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

Background - Self Attention (Single Head)

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

normalise (i.e.)× 1/ dk

softmax

scores

 q1

 q2

 q3

w1,1 w1,2 w1,3

weights

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

Background - Self Attention (Single Head)

Q

K

V

input

 x1

 x2

 x3

 out1

dx

dk

dk

dv

 k1

 k2

 k3

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

w1,1 w1,2 w1,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

dv

Background - Self Attention (Single Head)

Q

K

V

input

 x1

 x2

 x3

 out2

dx

dk

dk

dv

 k1

 k2

 k3

q2 ⋅ k1 q2 ⋅ k2 q2 ⋅ k3

w2,1 w2,2 w2,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out1

dv

Background - Self Attention (Single Head)

Q

K

V

input

 x1

 x2

 x3

 out3

dx

dk

dk

dv

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out2

 out1

dv

Background - Self Attention (Single Head)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

dv

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dv

Attention Head

Background - Self Attention (Single Head)

Input

x1

x2

x3

dx

Background - Multi-Headed Self Attention

out1
3

out1
2

out1
1

dh

Head 1

dk = dv = dh =
dx

H

out2
3

out2
2

out2
1

dh

Head 2

outH
3

outH
2

outH
1

dh

Head H. . .

. . .

. . .

. . .

Concatenate

Output

out1
out2
out3

dx

The multi-headed attention lets one layer do multiple
operations

It does not in itself add new power

So, how do we present one
head?

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

Self Attention (Single Head)

dx

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Single Head: Scoring Selecting↔

Pairwise!

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

choose/don’t choose decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

choose/don’t choose decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

choose/don’t choose decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

choose/don’t choose decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

choose/don’t choose decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

choose/don’t choose decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

choose/don’t choose decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

choose/don’t choose decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔

sel2 = select([2,0,0],[0,1,2],>=)

 2 0 0
0 T T T
1 T F F
2 T F F

Another example:

Is this “reasonable”?

What does it mean with respect to Q and K?

Decision: RASP abstracts to binary

choose/don’t choose decisions

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Single Head: Weighted Average Aggregation↔

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

reverse=aggregate(flip, [A,B,C])

 . ….. A B C
 F F T A B C => C
 F T F A B C => B => [C,B,A]
 T F F A B C => A

flip = select([2,1,0],[0,1,2],==)

 2 1 0
0 F F T
1 F T F
2 T F F

Symbolic language + no averaging when only
one position selected allows (for example):

Single Head: Select/Aggregate in RASP

The select decisions are pairwise!!
What would happen if they weren’t?

Example from before: reverse in RASP

Single Head: Select/Aggregate in RASP

The select decisions are pairwise!!
What would happen if they weren’t?

Example from before: reverse in RASP

Single Head: Select/Aggregate in RASP

The select decisions are pairwise!!
What would happen if they weren’t?

Example from before: reverse in RASP

See anything suspicious in the example?

Okay, that’s our parts!

Recap: The main transformer components are:

Recap: The main transformer components are:
The Initial Sequences

“indices”
and “tokens”

(…and “length”!)

Feed-Forward Sublayers

Multilayer Feedforward Networks are
Universal Approximators (Hornik et al,

1989)

Powerful
elementwise
operations

Recap: The main transformer components are:
The Initial Sequences

“indices”
and “tokens”

(…and “length”!)

Attention Heads

Pairwise “Select”,
then “Aggregate”

Feed-Forward Sublayers

Multilayer Feedforward Networks are
Universal Approximators (Hornik et al,

1989)

Powerful
elementwise
operations

Recap: The main transformer components are:
The Initial Sequences

“indices”
and “tokens”

(…and “length”!)

Attention Heads

Pairwise “Select”,
then “Aggregate”

Feed-Forward Sublayers

Multilayer Feedforward Networks are
Universal Approximators (Hornik et al,

1989)

Powerful
elementwise
operations

But also..

Recap: The main transformer components are:
The Initial Sequences

“indices”
and “tokens”

(…and “length”!)

Attention Heads

Pairwise “Select”,
then “Aggregate”

Feed-Forward Sublayers

Multilayer Feedforward Networks are
Universal Approximators (Hornik et al,

1989)

Powerful
elementwise
operations

Recap: The main transformer components are:
The Initial Sequences

“indices”
and “tokens”

(…and “length”!)

Skip connection

Encourages idea that
information can be retained

through many layers…

Attention Heads

Pairwise “Select”,
then “Aggregate”

Feed-Forward Sublayers

Multilayer Feedforward Networks are
Universal Approximators (Hornik et al,

1989)

Powerful
elementwise
operations

Recap: The main transformer components are:
The Initial Sequences

“indices”
and “tokens”

(…and “length”!)

Skip connection

Encourages idea that
information can be retained

through many layers…

Layernorms

LayerNorm
Parameters

• a_2 (vector)

• b_2 (vector)

• (small constant)ε

x

 x1, x1, . . . , x1

 x2, x2, . . . , x2

std(x1), . . . , std(x1)

std(x2), . . . , std(x2)

x

std(x)

a_2

b_2 expand

a_2
a_2

b_2
b_2

[a]

[b]

[a] ⊙ (x − x)
std(x) + ε

+ [b]

row-wise mean

row-wise std

expand

x1

x2

x3 y1

y2

y3

y

Attention Heads

Pairwise “Select”,
then “Aggregate”

Feed-Forward Sublayers

Multilayer Feedforward Networks are
Universal Approximators (Hornik et al,

1989)

Powerful
elementwise
operations

The Initial Sequences

“indices”
and “tokens”

(…and “length”!)

Skip connection

Encourages idea that
information can be retained

through many layers…

Layernorms

So the components are:

Open Question!!

RASP (Restricted Access Sequence Processing)
Initial Sequences

Sequence values: integer, float, string, boolean (uniform per sequence)

Selectors, and aggregate

Selectors can be composed with ‘and’, ‘not’, and ‘or’.

Aggregate can take default values for rows where the selector is empty.

Most “normal” operators present, and applied
elementwise to sequences

“Element” primitives also present, e.g. “e” and 1 above.
These are implicitly converted to constant-value sequences

Small Example
Computing length:

Small Example
Computing length:

Small Example
Computing length:

Small Example
Computing length:

frac_0=aggregate(full_s, [1,0,0,0])

 . ….. 1 0 0 0
T T T T 1 0 0 0 => 0.25
T T T T 1 0 0 0 => 0.25 => [0.25,0.25,0.25,0.25]
T T T T 1 0 0 0 => 0.25

T T T T 1 0 0 0 => 0.25

(On an example of length 4:)

Small Example
Computing length:

frac_0=aggregate(full_s, [1,0,0,0])

 . ….. 1 0 0 0
T T T T 1 0 0 0 => 0.25
T T T T 1 0 0 0 => 0.25 => [0.25,0.25,0.25,0.25]
T T T T 1 0 0 0 => 0.25

T T T T 1 0 0 0 => 0.25

(On an example of length 4:)

Small Example
Computing length:

(On an example of length 4:)

frac_0=aggregate(full_s, [1,0,0,0])

 . ….. 1 0 0 0
T T T T 1 0 0 0 => 0.25
T T T T 1 0 0 0 => 0.25 => [0.25,0.25,0.25,0.25]
T T T T 1 0 0 0 => 0.25

T T T T 1 0 0 0 => 0.25

RASP analysis?
- indices and tokens : 

 require zero layers

- select-aggregate pairs:  
 must be at least one layer after all of their dependencies 
 can have multiple pairs in one layer (multi-headed attention)

- local (feed-forward) operations:  
 don’t add layers (attached to earliest layer after dependencies are finished)

RASP analysis?
Can draw head/layer analysis, eg:

RASP analysis?
Can draw head/layer analysis, eg:

RASP analysis?
Can draw head/layer analysis, eg:

RASP analysis?
Can draw head/layer analysis, eg:

RASP analysis?
Can draw head/layer analysis, eg:

RASP analysis?
Can draw head/layer analysis, eg:

Connection to Reality?

Are our RASP programs predicting the right number of layers?

Are our RASP programs predicting relevant selector patterns?

Connection to Reality?
Example 1: reverse

Connection to Reality?

RASP analysis:

• First, length is computed  
 (1 layer, uniform attention)

• Then, length is used to create flip_s  
 (necessarily in next layer, ‘flipped’ attention)

Example 1: reverse

Connection to Reality?

RASP analysis:

 hypothesis: reverse requires 2 layers?

Example 1: reverse

• First, length is computed  
 (1 layer, uniform attention)

• Then, length is used to create flip_s  
 (necessarily in next layer, ‘flipped’ attention)

Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:

2 layers: 99.6% accuracy after 20 epochs

1 layer: 39.6% accuracy after 50 epochs

Even with compensation for
number of heads and parameters!

Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:

2 layers: 99.6% accuracy after 20 epochs

1 layer: 39.6% accuracy after 50 epochs

Bonus: the 2 layer transformer’s attention patterns:

Layer 1 (full_s) Layer 2 (flip_s)

Connection to Reality?
Example 2: histogram (assuming BOS)

Eg:

[§,h,e,l,l,o] [0,1,1,2,2,1]

[§,a,b,c,c,c] [0,1,1,3,3,3]

[§,a,b,a] [0,2,1,2]

↦
↦
↦

Connection to Reality?
Example 2: histogram (assuming BOS)

Reminder: computing length

frac_0=aggregate(full_s, [1,0,0,0])

 . ….. 1 0 0 0
T T T T 1 0 0 0 => 0.25
T T T T 1 0 0 0 => 0.25 => [0.25,0.25,0.25,0.25]
T T T T 1 0 0 0 => 0.25

T T T T 1 0 0 0 => 0.25

Eg:

[§,h,e,l,l,o] [0,1,1,2,2,1]

[§,a,b,c,c,c] [0,1,1,3,3,3]

[§,a,b,a] [0,2,1,2]

↦
↦
↦

Connection to Reality?
Example 2: histogram (assuming BOS)

Reminder: computing length

frac_0=aggregate(full_s, [1,0,0,0])

 . ….. 1 0 0 0
T T T T 1 0 0 0 => 0.25
T T T T 1 0 0 0 => 0.25 => [0.25,0.25,0.25,0.25]
T T T T 1 0 0 0 => 0.25

T T T T 1 0 0 0 => 0.25

Trick was: send 1 from exactly one position, and then
use weighted average to compute inverse of number

of selected positions (for length, this was all positions)

Eg:

[§,h,e,l,l,o] [0,1,1,2,2,1]

[§,a,b,c,c,c] [0,1,1,3,3,3]

[§,a,b,a] [0,2,1,2]

↦
↦
↦

Connection to Reality?
Example 2: histogram (assuming BOS)

Reminder: computing length

frac_0=aggregate(full_s, [1,0,0,0])

 . ….. 1 0 0 0
T T T T 1 0 0 0 => 0.25
T T T T 1 0 0 0 => 0.25 => [0.25,0.25,0.25,0.25]
T T T T 1 0 0 0 => 0.25

T T T T 1 0 0 0 => 0.25

Can we use a similar trick for histograms?

Trick was: send 1 from exactly one position, and then
use weighted average to compute inverse of number

of selected positions (for length, this was all positions)

Eg:

[§,h,e,l,l,o] [0,1,1,2,2,1]

[§,a,b,c,c,c] [0,1,1,3,3,3]

[§,a,b,a] [0,2,1,2]

↦
↦
↦

Connection to Reality?
Example 2: histogram (assuming BOS)

Reminder: computing length

frac_0=aggregate(full_s, [1,0,0,0])

 . ….. 1 0 0 0
T T T T 1 0 0 0 => 0.25
T T T T 1 0 0 0 => 0.25 => [0.25,0.25,0.25,0.25]
T T T T 1 0 0 0 => 0.25

T T T T 1 0 0 0 => 0.25

Can we use a similar trick for histograms?

Trick was: send 1 from exactly one position, and then
use weighted average to compute inverse of number

of selected positions (for length, this was all positions)

Specifically, what’s the challenge for histograms?Q:

Eg:

[§,h,e,l,l,o] [0,1,1,2,2,1]

[§,a,b,c,c,c] [0,1,1,3,3,3]

[§,a,b,a] [0,2,1,2]

↦
↦
↦

Connection to Reality?
Example 2: histogram (assuming BOS)

Reminder: computing length

frac_0=aggregate(full_s, [1,0,0,0])

 . ….. 1 0 0 0
T T T T 1 0 0 0 => 0.25
T T T T 1 0 0 0 => 0.25 => [0.25,0.25,0.25,0.25]
T T T T 1 0 0 0 => 0.25

T T T T 1 0 0 0 => 0.25

Can we use a similar trick for histograms?

Trick was: send 1 from exactly one position, and then
use weighted average to compute inverse of number

of selected positions (for length, this was all positions)

Specifically, what’s the challenge for histograms?

Need a known position to send 1 from!

Q:
A:

Eg:

[§,h,e,l,l,o] [0,1,1,2,2,1]

[§,a,b,c,c,c] [0,1,1,3,3,3]

[§,a,b,a] [0,2,1,2]

↦
↦
↦

Connection to Reality?
Example 2: histogram (assuming BOS)

Connection to Reality?
Example 2: histogram (assuming BOS)

Connection to Reality?
Example 2: histogram (assuming BOS)

Connection to Reality?
Example 2: histogram (assuming BOS)

Connection to Reality?
Example 2: histogram (assuming BOS)

Connection to Reality?
RASP analysis:

• Just one attention head

• It focuses on:

1. All positions with same token, and:

2. Position 0 (regardless of content)

Example 2: histogram (assuming BOS)

Connection to Reality?
RASP analysis:

• Just one attention head

• It focuses on:

1. All positions with same token, and:

2. Position 0 (regardless of content)

Selector pattern vs trained
transformer’s attention for same

input sequence:

Example 2: histogram (assuming BOS)

Insight
1. Further motivates the Universal Transformer

Recurrent blocks are like

allowing loops in RASP!

Insight
2. Explains results of the Sandwich Transformer

s
f

self-attention

feed-forward

If re-ordering and switching attention and feed-
forward layers of a transformer (while adjusting

to keep same number of parameters):

1. Better to have attention earlier, and feed-

forward later

2. Only attention not enough

Insight
3. Transformers can “use” at least of the computational cost they have:
n log(n) n2

“selector_width” is a RASP operation that takes an arbitrary selector and computes its width, for example:

Insight
3. Transformers can “use” at least of the computational cost they have:
n log(n) n2

This can be used to implement sort:

which we know requires at least operations
(if making no assumptions on input data)

n log(n)

“selector_width” is a RASP operation that takes an arbitrary selector and computes its width, for example:

Insight
3. Transformers can “use” at least of the computational cost they have:
n log(n) n2

This can be used to implement sort:

Open Question: is there something that “uses” all of the attention head cost?n2

“selector_width” is a RASP operation that takes an arbitrary selector and computes its width, for example:

which we know requires at least operations
(if making no assumptions on input data)

n log(n)

End

“Thinking Like Transformers” - ICML 2021

(Available on Arxiv)

Try it out!

 🌟 github.com/tech-srl/RASP 🌟

http://github.com/tech-srl/RASP

Optional Talking Points
• Bhattamishra et al (2020) note that, unlike LSTMs,

transformers struggle with some regular languages.
Why might that be? (What would a general method
for encoding a DFA in a transformer be?)

• Hahn (2019) proves that transformers with hard
attention cannot compute Parity with hard attention.
RASP can compute parity. What is the difference?

• How should we convert a RASP program to ‘real’
transformers? How big does our head-dimension
need to be for “select(indices,indices,<)”? How do
we implement and, or, and not between selectors?

• Do our selectors cover all the possible attention
patterns? What is missing?

