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(References for the Interested)
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The Transformer-Encoder
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The Transformer-Encoder
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4 d ' Does this thing have “states”?
i What does it have?




The Transformer-Encoder

Word
Embedding

e(l)
e(Like)
e(dogs)

Initial Encoding Layer 1 Output Encoder Output

dx
S v Encoder — ~ = Encoder —*
Positional Layer 1 Layer L
Embedding > - - - 4 :
dx dx dx

p(0)
p(1)

p(2)
4 d, ’ No states... but there is a sense of
Information being propagated




The Transformer-Encoder

Word
Embedding

e(l)
e(Like)
e(dogs)

Initial Encoding Layer 1 Output Encoder Output

dx
S v Encoder — ~ = Encoder —*
Positional Layer 1 Layer L
Embedding > - - - 4 :
dx dx dx

p(0)
p(1)
p(2)

J Layer input/outputs are “variables” of a transformer “program”
X .
The layers themselves are “operations”




So0... a programming language?



RASP (Restricted Access Sequence Processing)

® A transformer-encoder is a sequence to seqguence function (“seqguence operator”, or, “s-op”)

® |ts layers apply operations to the sequence

o RASP describes the input sequences and what the layers can do with them
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RASP (Restricted Access Sequence Processing)

® A transformer-encoder is a sequence to seqguence function (“seqguence operator”, or, “s-op”)

® |ts layers apply operations to the sequence

o RASP describes the input sequences and what the layers can do with them

Initial Encoding Layer 1 Output Encoder Output

Layer 1 Layer L

$— —> Encoder — ..~ Encoder —>
in / . -

d Layer input/outputs are “variables” of a transformer “program”
The layers themselves are “operations”



RASP base s-ops
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RASP base s-ops

Embedding The information before a
e(l) transformer has done anything
e(Like) (“O layer transformer”)

e(dogs)

dx tokens and indices are RASP built-ins:

>> tokens:

Positional s—-op: tokens
Embedding

>> 1ndices;
p(0) S—op: 1ndices
p(1)

p(2)
d

X




RASP base s-ops

Word
Embedding The information before a
e(l) transformer has done anything
: “O layer transformer”
e(Like) (“O layer transformer?”)
e(dogs)
dx tokens and indices are RASP built-ins:
>> tokens;
Positional s—-op: tokens
Embedding Example: tokens("hello") = [h, e, 1, 1, ol (strings)
(0) >> indices;
p S—op: 1ndices
1 Example: indices("hello") = [0, 1, 2, 3, 4] (ints)
p(1)
p(2)
‘ r ’ The RASP REPL gives you

A examples (until you ask it not to)



Okay, now what?

>> tokens;
s—op: tokens
Example: tokens("hello") = [h, e, 1, 1, o]l (strings)
>> 1ndices;
S—Oop: 1ndilces
Example: indices("hello") = [0, 1, 2, 3, 4] (ints)

To know what operations RASP may have, we must
inspect the transformer-encoder layers!
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Feed-Forward Sublayer

Multilayer Feedforward Networks are
Universal Approximators (Hornik et al,
1989)




Feed-Forward gives us (Many) Elementwise
Operations

Feed-Forward Sublayer Multilayer Feedforward Networks are
Universal Approximators

KURT HORNIK

Technische Universitat Wien

W/f MAXWELL STINCHCOMBE AND HALBERT WHITE
8 2 University of California. San Diego
(Received 16 September 1988 revised and accepted 9 March 1989)
d '

Abstract—This paper rigorously establishes that standard multilayer feedforward networks with as few as one
hidden layer using arbitrary squashing functions are capable of approximating any Borel measurable function
from one finite dimensional space to another to any desired degree of accuracy, provided sufficiently many
hidden units are available. In this sense, multilayer feedforward networks are a class of universal approximators.

>> jndices+1;
s—op: out
Example: out("hello")
>> tokens=="e" or tokens=="0";
s—op: out
Example: out("hello")

[1, 2, 3, 4, 5] (ints)

[F, T, F, F, T] (bools)



So far

>> tokens;
s—op: tokens
Example: tokens("hello") = [h, e, 1, 1, o] (strings)
>> indices;
S—op: 1ndices
Example: indices("hello") = [0, 1, 2, 3, 4] (ints)

>> 1ndices+1;

S—0op: out
Example: out("hello") = [1, 2, 3, 4, 5] (ints)
>> tokens=="e" or tokens=="0";
S—0op: out

Example: out("hello") = [F, T, F, F, Tl (bools)

Are we all-powerful
(well, transformer-powerful) yet?



Transformer-Encoder Layer
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Attention Sublayer

Multi-Head Attention




Background - Multi Head Attention

Starting from single-head attention...



Background - Self Attention (Single Head)
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SCores

input
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Background - Self Attention (Single Head)

Attention Head scores




Background - Multi-Headed Self Attention

Input




The multi-headed attention lets one layer do multiple
operations

't does not In itself add new power



S0, how do we present one
head?




Self Attention (Single Head)

Attention Head scores

normalise (i.e. X ll\ﬁk )




Single Head: Scoring <> Selecting

Scores
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Single Head: Scoring <> Selecting

Decision: RASP abstracts to binary

choose/don’t choose decisions — Select( y [O, 1 ,2] y——




Single Head: Scoring <> Selecting

Decision: RASP abstracts to binary

choose/don’t choose decisions — Select( y [0, 1 ,2] y——

scores
input
e Y
d, p !
. — softmax |
d, /

]
weights l




Single Head: Scoring <> Selecting

Decision: RASP abstracts to binary

choose/don’t choose decisions — Select( y [O, 1 ,2] y——
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Single Head: Scoring <> Selecting

Decision: RASP abstracts to binary

choose/don’t choose decisions — Select( y [O, 1 ,2] y——

TT

N = O

T Another example:
sl ormalise (i.e. X |‘ — SeleCt( 5[051 !2]
OTTT
17T
ow 2 T

Is this “reasonable”?
What does it mean with respect to Q and K?



Single Head: Weighted Average < Aggregation




Single Head: Weighted Average < Aggregation

new=aggregate(s/, [1,2,4])

124
TT 124 => 3
124 = 0 = [3,0,1]
T 124 => 1




Single Head: Weighted Average < Aggregation

new=aggregate(s/, [1,2,4])
124

TT => 3
= 0 => [3,0,1]
T =>

5




Single Head: Weighted Average < Aggregation

new=aggregate(s/, [1,2,4])
124

TT 124 =>]3
124 = |0]1= [3,0,1]
T 124 =>|1




Single Head: Weighted Average < Aggregation

new=aggregate(s/, [1,2,4])

124
TT 124 =>|3

124 =>|0)|=> [3,0,1]
T 124 =>|1

3
».Q' =1




Single Head: Weighted Average < Aggregation

new=aggregate(s/, [1,2,4])

124
TT 124 => 3
124 = 0 = [3,0,1]
T 124 => 1




Single Head: Weighted Average < Aggregation

new=aggregate(s/, [1,2,4])

124
TT 124 = 3
124 = 0 = [3,0,1]
T 124 => 1

Symbolic language + no averaging when only
one position selected allows (for example):

= select( ,[0,1,2],== reverse=aggregate(’lip, [A,B,C])

ABC
0 T T ABC = C
1 T T ABC = B = [C,B,A]
2 T T ABC = A




Single Head: Select/Aggregate in RASP

Example from before: reverse in RASP

Attention Head scores

input

>> flﬂp = select(length-indices-1, indices, ==);

selector: flip
Examp le:
(ie. X 1/\/d;) ‘ hello

1

1
1
1
1

O e~ 0 =

weights

The select decisions are pairwise!!
What would happen if they weren’t?



Single Head: Select/Aggregate in RASP

Example from before: reverse in RASP

Attention Head scores

B

—

>> flﬂp select(length-indices-1, indices, ==);
selector: flip
Examp le:
, 1
1
1
1

~ e~ 0

0 1
| | >> reverse = aggregate(flip, tokens);
e ] S—-0p: reverse
Example: reverse("hello") = [0, 1, 1, e, h] (strings)

weights

- >
I I .

The select decisions are pairwise!!
What would happen if they weren’t?



Single Head: Select/Aggregate in RASP

Example from before: reverse in RASP

Attention Head scores

input

>> flﬂp = select(length-indices-1, indices, ==);
selector: flip
Examp le:

(ie. X 1/\/d;) ‘ hello

1

1
1
1

~ e~ 0 =

0 1
| >> reverse = aggregate(flip, tokens);
e ] S—-0p: reverse
Example: reverse("hello") = [0, 1, 1, e, h] (strings)

weights

The select decisions are pairwise!!
What would happen if they weren’t?

See anything suspicious in the example?



Okay, that’s our parts!
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Recap: The main transformer components are:

The Initial Sequences Feed-Forward Sublayers

 Wora Feed-Forward Sublayer
e(D) —X>

e(Like)
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d, v

Positional “indices,, PowerfUI
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p(1) operations
L (...and “length”!)
d Multilayer Feedforward Networks are

dys Universal Approximators (Hornik et al,

1989)



Recap: The main transformer components are:

The Initial Sequences

Word
Embedding

e(D)
e(Like)
e(dogs)

dx

Positional
Embedding

p(0)
p(1)
p(2)

Attention Head

input

“Indices”

and “tokens”

: a. >
—

(...and “length”!)

Attention Heads

“mm/

weights

Feed-Forward Sublayers

Feed-Forward Sublayer

Powerful
elementwise
operations

Multilayer Feedforward Networks are
Universal Approximators (Hornik et al,
1989)

scores
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Deep Residual Learning for Image Recognition
Kaiming He, Xiangyu Z hang, Shaoqing Ren, Jian Sun

Encourages idea that
information can be retained
through many layers...



Recap: The main transformer components are:

!

r -b- expand

-

§> expand

Skip connection

b

Deep Residual Learning for Image Recognition

iming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

Encourages idea that

iInformation can be retained

through many layers...

Layernorms

X

b 2
b_2

std(x) —
— row-wise std
| a2 la] —
’ a2 \

[b] _

la] ® (x — X)
" std(x) + €

+[b] —




LayerNorm

Parameters
e a2 (vector)
e b_2 (vector)
e ¢ (small constant)

row-wise mean

row-wise std

l a_2
a_2

X

b 2



So the components are:

Skip connection

b

Deep Residual Learning for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

Encourages idea that
information can be retained
through many layers...

Layernorms

X
—  row-wise mean

std(x) —
— row-wise std

!

—» expand

v« — | [a] © (x—X)
|‘ | std(x) + € + 1ol —

L
—»  expand ]
Open Question!!






RASP (Restricted Access Sequence Processing)

Initial Sequences

>> tokens;
s—op: tokens
Example: tokens("hello") = [h, e, 1, 1, o] (strings)

>> indices;
Ss—op: 1ndices
Example: indices("hello") = [0, 1, 2, 3, 4] (ints)

Most “normal” operators present, and applied

Sequence values: integer, float, string, boolean (uniform per sequence) _
elementwise to sequences

>> indices+1;
Ss—op: out
Example: out("hello") [1, 2, 3, 4, 5] (ints)

Selectors, and aggregate »> [l = e e ey L

S—op: out

>> flﬂp = select(length-indices-1, indices, ==);
Example: out("hello") = [F, T, F, F, Tl (bools)

selector: flip
Examp le:

hetll ‘i “Element” primitives also present, e.g. “e” and 1 above.

1 These are implicitly converted to constant-value sequences

1
1

0 1
>> reverse = aggregate(flip, tokens);
S—-0p: reverse
Example: reverse("hello") = |o, h] (strings)

Selectors can be composed with ‘and’, ‘not’, and ‘or’.
Aggregate can take default values for rows where the selector is empty.



Small Example

Computing length:



Small Example

Computing length:

>> indicator(indices==0);
S—op: out

/ Example: out("hello") = [1, @, @, @, 0] (ints)



Small Example

Computing length:
>> full s = select(1,1,==);
selector: full_s >> indicator(indices==0);
Examp le: s—op: out
hello Example: out("hello") = [1, 0, @, @, @] (ints)
h 11111
e 11111
L 11111
L 11111
0 11111




Small Example

Computing length:
>> full § = select(1,1,==);
selector: full_s >> indicator(indices==0);
Examp le: s—op: out
hello Example: out("hello") = [1, 0, 0, 0, 0] (ints)
h | 11111
e | 11111
L] 11111
L] 11111
o 11111 (On an example of length 4:)
frac_O=aggregate( , [1,0,0,0])
1000

1000 = 0.25
1000 => 0.25 => [0.25,0.25,0.25,0.25]
1000 => 0.25
1000 => 0.25

- = = =
- = = -
- = = =
- = = =]



Small Example

Computing length:
>> full § = select(1,1,==);
selector: full_ s >> indicator(indices==0);
Examp le: s—op: out
hello Example: out("hello") = [1, @0, @, @0, @] (ints)
h | 11111
e | 11111
L] 11111
L] 11111
0 I 1.1 11 1 : (On an example of length 4:)
>> frac_0=aggregate([full_s, indicator(indices==0) ) ;
s—op: frac_0 frac _O=aggregate( , [1,0,0,0])

Example: frac_0("hello") = [0.2]%5 (floats) 1000

TTTT 1000 => 0.25
TTTT 1000 => 0.25 => [0.25,0.25,0.25,0.25]
TTTT 1000 => 0.25
TTTT 1000 => 0.25



Small Example

Computing length:
>> fUll § = select(1,1,==);
selector: full_s >> indicator(indices==0);
Example: s—op: out
hello Example: out("hello") = [1, @, 0, 0, @] (ints)
h | 11111
e | 11111
L] 11111
L] 11111
0 I 1111 1 : (On an example of length 4:)
>> frac_@=aggregate(full_s, indicator(indices==0));
s—op: frac_0 frac _O=aggregate( , [1,0,0,0])
Example: frac_0("hello") = [0.2]%5 (floats)
>> round(1l/frac 0); 1000
s—op: out TTTT 1000 => 0.25
Example: OUt("hellO") — [5]*5 (lntS) TTTT 1000 = 0.25 => [025,025,025,025]
TTTT 1000 => 0.25
TTTT 1000 => 0.25



RASP analysis?

- Indices and tokens
require zero layers

- select-aggregate pairs:
must be at least one layer after all of their dependencies
can have multiple pairs in one layer (multi-headed attention)

- local (feed-forward) operations:
don’t add layers (attached to earliest layer after dependencies are finished)



RASP analysis?

: layer 2

Can draw head/layer analysis, eg: ayer
head 0
>> draw(reverse,"abcdeabcde") ip 5)

— — - - - - - - -

- <. - ‘ . ~
RN, AWA\'A " B —

(#0)/length [0.1

9

layer 1 2

head 0 7

(full average) 6

_ 0(1(2(3]|4|5|6]|7|8|9 -

indices |0|1)2(34/56/7]89 ols]7[e]s[a[3[2[1fo]
0

EIIEEEEEEIEIE 3

2

1

0

from (1)
from (2, 0)




RASP analysis?

: | 2

Can draw head/layer analysis, eqg: ayer
| head 0
>> draw(reverse,"abcdeabcde") (flip_s)

layer 1

head 0
(full average)

foft[2(3[4[5[6(7|8]9

|indices |0]1]2[3[4[5]6|7|89
MIEEEEEEEE
‘\

918(716]5(4|3|2(1|0

2 o (s TF ‘ >
| “AA"A'A i

Sl=|p|lw|la|lwn|an|w]|oo]|©

length from (1)
FF |( ( length - indices )- 1 )| 9 from (2, 0)




RASP analysis?

: | 2

Can draw head/layer analysis, eqg: ayer
| head 0
>> draw(reverse,"abcdeabcde") (flip_s)

layer 1
head 0
(full average) _
011(2|3|4|5|6|7|8(9
|indices |0|1]23[4|5]6/789 l9[8[7]6[5]4[3]2[1]0
MIEEEEEEEE

— — - - e e - -

w \\y

(#0)/length 0.110.110.110.1]0.1]0.1]0.1]0.1|0.1|0.1 g(1)
ﬁ length 10(10({10(10|10|10(10(10| 10|10 g(2)| from (1)
((length-indices)-1)|9 |8 (7|6 |5|4|3|2|1]|0 g@3)|from(2,0)

Sl=|lN|W|lAErlWNIA]|D]|00]| O




RASP analysis?

: | 2

Can draw head/layer analysis, eqg: ayer
| head 0
>> draw(reverse,"abcdeabcde") (flip_s)

layer 1
head 0
(full average) _
011(2|3|4|5|6|7|8(9
|indices |0|1]23[4|5]6/789 l9[8[7]6[5]4[3]2[1]0
MIEEEEEEEE

— — - - e e R——

2 o (s TF ‘ >
| “AA"A'A i

Sl=|p|lw|la|lwn|an|w]|oo]|©

{m ( (length - mdlces) 1)| 9




RASP analysis?

— - - . - - - - -

FAp A TR T e L e e W A NN
e -., - - ..- - - -_-_\\

\‘,/f ‘\‘ [;f

: | 2
Can draw head/layer analysis, eg: o
| head 0
>> draw(reverse,"abcdeabcde") (flip_s)
9
layer 1 2
head 0 7
(full average) ‘ 6
, [o[1[2[3[4]s]6[7]8[5] |2
indices |0[1]2(3|4|5/6/7|89 ols]7[e]s[a[3[2[1fo]
mlmmmmnm 3
2
1
0

FF length from (1)
FF |( ( length - indices ) - 1)| 9 from (2, 0)




RASP analysis?

: | 2

Can draw head/layer analysis, eqg: ayer
| head 0
>> draw(reverse,"abcdeabcde") (flip_s)

layer 1
head 0
(full average) _
011(2|3|4|5|6|7|8(9
|indices |0|1]23[4|5]6/789 l9[8[7]6[5]4[3]2[1]0
MIEEEEEEEE

— — - - e e - -

w \\y

Sl=|lN|W|lAErlWNIA]|D]|00]| O

length from (1)
FF |( ( length - indices )- 1 )| 9 from (2, 0)




Connection to Reality?

Are our RASP programs predicting the right number of layers?

Are our RASP programs predicting relevant selector patterns?



Connection to Reality?

Example 1: reverse

>> fli#_s = select(length-indices-1,indices,==);
selector: flip_s
Example:
hello
1
1
1
1
1
>> reverse=aggregate(flid_s,tokens);
S—0p: reverse
Example: reverse("hello") = [o, 1, 1, e, h]

O —~ 0 =




Connection to Reality?

Example 1: reverse

>> fli#_s = select(length-indices-1,indices,==);
selector: flip_s

Example:
hello -
" 1 RASP analysis:
e 1
L 1
Cig » First, length is computed
>> reverse=aggregate (flip_s,/tokens); (1 layer, uniform attention)
S—0p: reverse : :
Example: reverse("hello") = [o, 1, 1, e, h] ¢ Then, /ength IS Used tO Create f/I,O_S

(necessarily in next layer, ‘flipped’ attention)



Connection to Reality?

Example 1: reverse

>> fli#_s = select(length-indices-1,indices,==);
selector: flip_s

Example:
hello -
" 1 RASP analysis:
e 1
L 1
Tt » First, length is computed
>> reverse=aggregate (flip_s,/tokens); (1 layer, uniform attention)
S—0p: reverse : :
Example: reverse("hello") = [o, 1, 1, e, h] ¢ Then, /ength IS Used tO Create f/I,O_S

(necessarily in next layer, ‘flipped’ attention)

— hypothesis: reverse requires 2 layers”?



Connec

>> draw(reverse,"abcdeabcde")

layer 1

head 0
(full average)

(#0)/length [0.1[0.10.

indices O|1(2(3[4|5(6(7 (8|9 RO
(#0)/length 0.1{0.1{0.1{0.1{0.1{0.1{0.1{0.1{0.1(0.1 (1)
FF length 10|/10/10({10|10|10(10|{10| 10|10 g(2)| from (1)
IFF((lengﬂl-indices)-l) 9|8|7|6|5|4|3|2(1|0 g@)|from(2,0)
layer 2
head 0
(flip_s)
0(1(2(3]4|5(6|7
9
8
7 1
6 1
5 1
4 1
3 1
2 1
1| |1
0|1
Etokens a|blc|d|e|a|b|c

reverse |e [d|c

— full s

<«—flip_s

tion to Reality?

RASP expects 2 layers for arbitrary-length reverse



Connection to Reality?

>> draw(reverse,"abcdeabcde")

er RASP expects 2 layers for arbitrary-length reverse
(fulilzsdcr(z)ige)
2  «—— full_s - Test:
N TR A A R R T R Training small transformers on lengths 0-100:

s Jo[1]2]3]4]5]6[7]8]9 O 2 layers: 99.6% accuracy after 20 epochs
(#0)/length 0.110.110.1{0.1]0.1/0.1{0.1{0.1]0.1{0.1 g(1)
FF|  lengh  [10[10]10]10]10]10[10]10[10]10 @] from (1 1 layer: 39.6% accuracy after 50 epochs
IFF((lengﬂx-indices)-l) 9|8|7|6|5|4|3|2(1|0 g@)|from(2,0)

Even with compensation for

layer 2
hydo number of heads and parameters!
(flip_s)
0f1(2(3|4|5|6|7|8(9

9 1

8 1

7 1

6 1

5 1

4 1

3 1 D e ﬂlp S

2 1

1| (1

01

0
=2
(o]
(=
(¢’
0
=2
o
(=9
(¢’

reverse |e [d|c|bla|e|d|c|b|a




Connection to Reality?

>> draw(reverse,"abcdeabcde")

layer 1

head 0
(full average)

S e NS NG

(#0)/length [0.1]0.1

indices ol1]2]3]4]5[6]|7]8]|9 o

(#0)/length o.1]o.1]o.1]o.1[o.1]o.1fo.1]0.1]0.1[0.1 § 1)

length 10[t0f10]10]10]10]10[10]10] 10 §@)] from (1)
((length - indices)-1)[ 9 [8[7[6 5[4 [3[2]1]0 §3)|from 2,0

layer 2
head 0
(flip_s)
0]1]2|3|4|5|6|7
9
8
7 1
6 1
5 1
4 1
3 1
2 1
1| |1
0|1
Etokensabcdeabc
reverse |e [d|c|bla|e|d|c

..:":":“ ‘ u I I s
- I
Pt
= —
SSREN

<«—flip_s

RASP expects 2 layers for arbitrary-length reverse

Test:
Training small transformers on lengths 0-100:

2 layers: 99.6% accuracy after 20 epochs
1 layer: 39.6% accuracy after 50 epochs

Bonus: the 2 layer transformer’s attention patterns:

— 1.0

Layer 1 (full _s) Layer 2 (flip_s)

- 0.8




Connection to Reality?

Example 2: histogram (assuming BOS)

EQ:

§,h,ell,o] = [0,1,1,2,2,1]
§,a,b,c,c,c] — [0,1,1,3,3,3]
I§,a,b,a] — [0,2,1,2]



Connection to Reality?

Example 2: histogram (assuming BOS)

Reminder: computing length

frac_O=aggregate( , [1,0,0,0])
. 1000
Eg: TTTT 1000 => 0.25
TTTT 1000 => 0.25 => [0.25,0.25,0.25,0.25]
TTTT 1000 => 0.25
[§’h’e’|’|’0] => [0’1’1’2’2’1] TTTT 1000 => 0.25

§,a,b,c,c,c] — [0,1,1,3,3,3]
[§,a,b,a] — [0,2,1,2]



Connection to Reality?

Example 2: histogram (assuming BOS)

Reminder: computing length

frac_O=aggregate( , [1,0,0,0])
_ 1000
Eg: TTTT 1000 => 0.25
TTTT 1000 = 0.25 => [0.25,0.25,0.25,0.25]
TTTT 1000 = 0.25
Sh.ellol = 10,1,1,2,2,1] TTTT 1000 => 0.25
§,a,b,c,c,c] — [0,1,1,3,3,3]
[§,a,b,a] N [0,2,1 ,2] Trick was: send 1 from exactly one position, and then

use weighted average to compute inverse of number
of selected positions (for length, this was all positions)



Connection to Reality?

Example 2: histogram (assuming BOS)

Reminder: computing length

frac_O=aggregate( , [1,0,0,0])
_ 1000
Eg: TTTT 1000 => 0.25
TTTT 1000 = 0.25 => [0.25,0.25,0.25,0.25]
TTTT 1000 => 0.25
Sh.ellol = 10,1,1,2,2,1] TTTT 1000 => 0.25
§,a,b,c,c,c] — [0,1,1,3,3,3]
[§,a,b,a] N [0,2,1 ,2] Trick was: send 1 from exactly one position, and then

use weighted average to compute inverse of number
of selected positions (for length, this was all positions)

Can we use a similar trick for histograms?



Connection to Reality?

Example 2: histogram (assuming BOS)

Reminder: computing length
frac_O=aggregate( , [1,0,0,0])

1000

1000 => 0.25

1000 => 0.25 => [0.25,0.25,0.25,0.25]
1000 => 0.25

1000 = 0.25

EQ:

- = = -]
- = = -
i B B
e i B e

I§,h,e,ll,o] — [0,1,1,2,2,1]

I§,a,b,c,c,c] — [0,1,1,3,3,3]

Trick ; 1f iti

[§,a,b,a] N [0,2,1 ,2] rick was send 1 from exactly one .posmon, and then
use weighted average to compute inverse of number
of selected positions (for length, this was all positions)

Can we use a similar trick for histograms?

Q - Specifically, what’s the challenge for histograms?
l



Connection to Reality?

Example 2: histogram (assuming BOS)

EQ:

[§,h,e,ll,o] +— [0,1,1,2,2,1]
I§,a,b,c,c,c] — [0,1,1,3,3,3]
[§,a,b,a] — [0,2,1,2]

Reminder: computing length

frac_O=aggregate( , [1,0,0,0])
1000
TTTT 1000 => 0.25
TTTT 1000 => 025 => [0.25,0.25,0.25,0.25]
TTTT 1000 => 0.25
TTTT 1000 => 0.25

Trick was: send 1 from exactly one position, and then
use weighted average to compute inverse of number
of selected positions (for length, this was all positions)

Can we use a similar trick for histograms?

Q - Specifically, what’s the challenge for histograms?
l

A

Need a known position to send 1 from!



Connection to Reality?

Example 2: histogram (assuming BOS)

>> set example "§hello”



Connection to Reality?

Example 2: histogram (assuming BOS)

>> set example "§hello"

>> same_or_@ = select(tokens,tokens,==)] or select(indices,0,==)\;

selector: same_or_ 0
Examp le:

hel Lo

1
1
11
11
1

O —r—~ M T w
N e X




Connection to Reality?

Example 2: histogram (assuming BOS)

>> set example "§hello"
>> same _or @ = select(tokens,tokens,==) or select(indices,0,==);
selector: same _or 0
Examp le:
hel Lo

1
1
11
11

—~ ~ 0D T w
R W

0 1 1
>> frac_with_0 = aggregate(same_or_0,indicator(indices==0));
s—op: frac_with_0
Example: frac_with_0("§hello") = [1, 0.5, 0.5, 0.333, 0.333, 0.5] (floats)



Connection to Reality?

Example 2: histogram (assuming BOS)

>> set example "§hello"
>> same _or @ = select(tokens,tokens,==) or select(indices,0,==);
selector: same_or_ 0
Examp le:

hel Lo

1
1

— ~ D T w
= W

11
11
0 1 1
>> frac_with_0 = aggregate(same_or_0,indicator(indices==0));
s—op: frac_with_0
Example: frac_with _0("§hello") = [1, 0.5, 0.5, 0.333, 0.333, 0.5] (floats)
>> histogram_assuming_bos = round(1l/frac_with_0)-1;
Ss—op: histogram_assuming_bos
Example: histogram_assuming_bos('"§hello") = [0, 1, 1, 2, 2, 1] (ints)




Connection to Reality?

Example 2: histogram (assuming BOS)

>> examples off

>> same_or 0 = select(tokens,tokens,==) or select(indices,0,==);
selector: same or_0

>> frac_with_0 = aggregate(same_or_0,indicator(indices==0));
s—op: frac_with_0

>> histogram_assuming bos = round(1l/frac_with_0)-1;
s—op: histogram_assuming_bos

>> histogram_assuming_bos('"§hello");

= [0, 1, 1, 2, 2, 1] (ints)



>>
>>

>>

>>

>>

Connection to Reality?

Example 2: histogram (assuming BOS)

examples off
same _or @ = select(tokens,tokens,==) or select(indices,0,==);
selector: same or 0
frac_with_0 = aggregate(same_or_0,indicator(indices==0));
s—op: frac_with_0
histogram_assuming _bos = round(1/frac_with_0)-1;
s—op: histogram_assuming_bos
histogram_assuming_bos("§hello");
= [0, 1, 1, 2, 2, 1] (ints)

RASP analysis:

e Just one attention head

* |t focuses on:
1. All positions with same token, and:
2. Position 0 (regardless of content)



Example 2: histogram (assuming BOS)

>>
>>

>>

>>

>>

Connection to Reality?

examples off

same_or_0 = select(tokens,tokens,==) or select(indices,0,==);

selector: same or_0

frac_with_0 = aggregate(same_or_0,indicator(indices==0));

s—op: frac_with_0

histogram_assuming_bos = round(1l/frac_with_0)-1;

s—op: histogram_assuming_bos
histogram_assuming_bos("§hello");
= [0, 1, 1, 2, 2, 1] (ints)

Selector pattern vs trained
transformer’s attention for same
iInput sequence:

g 0.3 04 00 00 00 00 00 03 00 0.0

EEROEN 0.0 pitse 0.0 0.0 possy 0.0 0.0 p:2w 0.0

| | e | e | e | e | e | e | e | e

RASP analysis:

e Just one attention head

* |t focuses on:
1. All positions with same token, and:
2. Position 0 (regardless of content)

.0.0 0.0 0.0 00 00 01 0.0 00 0.1

04 00 00 03 03 00 00 00 00 0.0

04 00 00 03 03 00 00 00 00 0.0

EEREESN 0.0 puEEN 0.0 0.0 g=sN 0.0 0.0 p@r2m 0.0

06 00 00 0.0 0.0 0.0 04 00 0.0 0.0

g 0.3 04 00 00 00 0.0 00 03 00 0.0

EEREESN 0.0 gUNEN 0.0 0.0 gussN 0.0 0.0 p@:2m 0.0

.0.0 00 000 0.0 0.0 0.0 0.0 0.0 puiss
J I I e J I



Insight

1. Further motivates the Universal Transformer

s

Recurrent _
Encoder Transition Function Recurrent blocks are like
Block ! allowing loops in RASP!

Multihead Self-Attention
A

sdals | 104

[ Embed Input Symbols ]

?

Input Sequence

Universal Transformers

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, tukasz Kaiser



Insight

Model PPLy
. . 22.80
2. Explains results of the Sandwich Transformer 21.02
20.98
20.75
: : : 20.43
Improving Transformer Models by Reordering their Sublayers 20,28
Ofir Press, Noah A. Smith, Omer Levy 20.02
. L . 19.93
If re-ordering and switching attention and feed- 19.85
forward layers of a transformer (while adjusting 19.82
19.77
to keep same number of parameters): 19.55
1. Better to have attention earlier, and feed- 19.49
19.47
forward later 19.25
2. Only attention not enough 19.13
18.86
18.83
18.62
18.54
18.49
| 18.34
Hself-attentlcn 18.31

sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfstf

ssssssfsssffffsfsfffffffffffst

Sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfsf 18.25
feed_forward SsssSSfSSSEffffsfsfffffffffffst 18.12




Insight

2

3. Transformers can “use” at least nlog(n) of the n“ computational cost they have:

“selector_width” is a RASP operation that takes an arbitrary selector and computes its width, for example:

>> selector width(select(tokens,tokens,==));
s—op: out
Example: out("hello") = [1, 1, 2, 2, 1] (ints)



Insight

2

3. Transformers can “use” at least nlog(n) of the n“ computational cost they have:

“selector_width” is a RASP operation that takes an arbitrary selector and computes its width, for example:

>> selector width(select(tokens,tokens,==));
S—op: out
Example: out("hello") = [1, 1, 2, 2, 1] (ints)

This can be used to implement sort:

>> selector examples off
>> earlier token = select(tokens,tokens,<) or (select(tokens,tokens,==) and select(indices,indices,<));
selector: earlier_token
>> num_prev = selector_width(earlier_token);
S—0p: num_prev
Example: num_prev("hello") = [1, 0, 2, 3, 4] (ints)
>> sorted = aggregate(select(num_prev,indices,==),tokens);
s—op: sorted
Example: sorted("hello") = [e, h, 1, 1, o] (strings)

which we know requires at least n log(n) operations
(if making no assumptions on input data)



Insight

2

3. Transformers can “use” at least nlog(n) of the n“ computational cost they have:

“selector_width” is a RASP operation that takes an arbitrary selector and computes its width, for example:

>> selector width(select(tokens,tokens,==));
S—op: out
Example: out("hello") = [1, 1, 2, 2, 1] (ints)

This can be used to implement sort:

>> selector examples off
>> earlier token = select(tokens,tokens,<) or (select(tokens,tokens,==) and select(indices,indices,<));
selector: earlier_token
>> num_prev = selector_width(earlier_token);
S—0p: num_prev
Example: num_prev("hello") = [1, 0, 2, 3, 4] (ints)
>> sorted = aggregate(select(num_prev, indices,==),tokens);
s—op: sorted
Example: sorted("hello") = [e, h, 1, 1, o] (strings)

which we know requires at least n log(n) operations
(if making no assumptions on input data) Open Question: is there something that “uses” all n? of the attention head cost?



Try it out!
github.com/tech-srl/RASP

“Thinking Like Transformers” - ICML 2021
(Available on Arxiv)


http://github.com/tech-srl/RASP

Optional Talking Points

Bhattamishra et al (2020) note that, unlike LSTMSs,
transformers struggle with some regular languages.
Why might that be? (What would a general method
for encoding a DFA in a transformer be?)

Hahn (2019) proves that transformers with hard

attention cannot compute Parity with hard attention.

RASP can compute parity. What is the difference?

How should we convert a RASP program to ‘real’
transformers? How big does our head-dimension
need to be for “select(indices,indices,<)”? How do
we implement and, or, and not between selectors?

Do our selectors cover all the possible attention
patterns? What is missing?

Add & Norm
Feed
Forward
Add & Norm

Multi-Head
Attention

N x

Positional
Encoding e N
Input
Embedding

Inputs



