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So… a programming language?
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The RASP REPL gives you 
examples (until you ask it not to)
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Okay, now what?

To know what operations RASP may have, we must 
inspect the transformer-encoder layers!



Transformer-Encoder Layer
Input

x1

x2

x3

dx

Multi-Head Attention A

Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1

          o1

          o2

          o3

dx

Wff
1

          o′ 1

          o′ 2

          o′ 3

dx

          ff1
          ff2
          ff3

dff

Wff
2

          o′ ′ 1

          o′ ′ 2

          o′ ′ 3

dx

ReLU

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer
There’s a lot in here…



Multi-Head Attention A

Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1

          o1

          o2

          o3

dx

          o′ 1

          o′ 2

          o′ 3

dx

          o′ ′ 1

          o′ ′ 2

          o′ ′ 3

dx

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Wff
1

          ff1
          ff2
          ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Input

x1

x2

x3

dx

Feed-Forward Sublayer



Multi-Head Attention A

Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1

          o1

          o2

          o3

dx

          o′ 1

          o′ 2

          o′ 3

dx

          o′ ′ 1

          o′ ′ 2

          o′ ′ 3

dx

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Wff
1

          ff1
          ff2
          ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Input

x1

x2

x3

dx

Feed-Forward Sublayer

Multilayer Feedforward Networks are 
Universal Approximators (Hornik et al, 

1989)



Feed-Forward gives us (Many) Elementwise 
Operations



So far

Are we all-powerful  
(well, transformer-powerful) yet?
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Background - Multi Head Attention

Starting from single-head attention…
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The multi-headed attention lets one layer do multiple 
operations 

It does not in itself add new power



So, how do we present one 
head?
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Pairwise!
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sel = select([2,0,0],[0,1,2],==)

    2  0  0 
0  F  T  T 
1  F  F  F 
2  T  F  F

Single Head: Scoring  Selecting↔

sel2 = select([2,0,0],[0,1,2],>=)
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Another example:

Is this “reasonable”?

What does it mean with respect to Q and K?

Decision: RASP abstracts to binary 

choose/don’t choose decisions
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       . ….. A B C  
 F  F  T    A B C   =>   C 
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flip = select([2,1,0],[0,1,2],==)

    2  1  0 
0  F  F  T 
1  F  T  F 
2  T  F  F

Symbolic language + no averaging when only 
one position selected allows (for example):
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What would happen if they weren’t?

Example from before: reverse in RASP



Single Head: Select/Aggregate in RASP

The select decisions are pairwise!!
What would happen if they weren’t?

Example from before: reverse in RASP



Single Head: Select/Aggregate in RASP

The select decisions are pairwise!!
What would happen if they weren’t?

Example from before: reverse in RASP

See anything suspicious in the example?



Okay, that’s our parts!



Recap: The main transformer components are:



Recap: The main transformer components are:
The Initial Sequences

“indices”  
and “tokens”

(…and “length”!)



Feed-Forward Sublayers

Multilayer Feedforward Networks are 
Universal Approximators (Hornik et al, 

1989)

Powerful 
elementwise 
operations

Recap: The main transformer components are:
The Initial Sequences

“indices”  
and “tokens”

(…and “length”!)



Attention Heads

Pairwise “Select”, 
then “Aggregate”

Feed-Forward Sublayers

Multilayer Feedforward Networks are 
Universal Approximators (Hornik et al, 

1989)

Powerful 
elementwise 
operations

Recap: The main transformer components are:
The Initial Sequences

“indices”  
and “tokens”

(…and “length”!)



Attention Heads

Pairwise “Select”, 
then “Aggregate”

Feed-Forward Sublayers

Multilayer Feedforward Networks are 
Universal Approximators (Hornik et al, 

1989)

Powerful 
elementwise 
operations

But also..

Recap: The main transformer components are:
The Initial Sequences

“indices”  
and “tokens”

(…and “length”!)



Attention Heads

Pairwise “Select”, 
then “Aggregate”

Feed-Forward Sublayers

Multilayer Feedforward Networks are 
Universal Approximators (Hornik et al, 

1989)

Powerful 
elementwise 
operations

Recap: The main transformer components are:
The Initial Sequences

“indices”  
and “tokens”

(…and “length”!)

Skip connection

Encourages idea that 
information can be retained 

through many layers…



Attention Heads

Pairwise “Select”, 
then “Aggregate”

Feed-Forward Sublayers

Multilayer Feedforward Networks are 
Universal Approximators (Hornik et al, 

1989)

Powerful 
elementwise 
operations

Recap: The main transformer components are:
The Initial Sequences

“indices”  
and “tokens”

(…and “length”!)

Skip connection
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LayerNorm
Parameters

• a_2 (vector)

• b_2 (vector)

•      (small constant)ε

x

  x1, x1, . . . , x1

 x2, x2, . . . , x2

std(x1), . . . , std(x1)

std(x2), . . . , std(x2)

x

std(x)

a_2

b_2 expand

a_2
a_2

b_2
b_2

[a]

[b]

[a] ⊙ (x − x)
std(x) + ε

+ [b]

row-wise mean

row-wise std

expand

x1

x2

x3 y1

y2

y3

y



Attention Heads

Pairwise “Select”, 
then “Aggregate”

Feed-Forward Sublayers

Multilayer Feedforward Networks are 
Universal Approximators (Hornik et al, 

1989)

Powerful 
elementwise 
operations

The Initial Sequences

“indices”  
and “tokens”

(…and “length”!)

Skip connection

Encourages idea that 
information can be retained 

through many layers…

Layernorms

So the components are:

Open Question!!





RASP (Restricted Access Sequence Processing)
Initial Sequences

Sequence values: integer, float, string, boolean (uniform per sequence)

Selectors, and aggregate

Selectors can be composed with ‘and’, ‘not’, and ‘or’.

Aggregate can take default values for rows where the selector is empty.

Most “normal” operators present, and applied  
elementwise to sequences

“Element” primitives also present, e.g. “e” and 1 above. 
These are implicitly converted to constant-value sequences



Small Example
Computing length:
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frac_0=aggregate(full_s, [1,0,0,0])

          . ….. 1 0 0 0  
T  T  T  T    1 0 0 0   =>  0.25  
T  T  T  T    1 0 0 0   =>  0.25  =>   [0.25,0.25,0.25,0.25] 
T  T  T  T    1 0 0 0   =>  0.25

T  T  T  T    1 0 0 0   =>  0.25

(On an example of length 4:)
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Small Example
Computing length:

(On an example of length 4:)

frac_0=aggregate(full_s, [1,0,0,0])

          . ….. 1 0 0 0  
T  T  T  T    1 0 0 0   =>  0.25  
T  T  T  T    1 0 0 0   =>  0.25  =>   [0.25,0.25,0.25,0.25] 
T  T  T  T    1 0 0 0   =>  0.25

T  T  T  T    1 0 0 0   =>  0.25



RASP analysis?
- indices and tokens : 

             require zero layers


- select-aggregate pairs:  
             must be at least one layer after all of their dependencies 
             can have multiple pairs in one layer (multi-headed attention)


- local (feed-forward) operations:  
             don’t add layers (attached to earliest layer after dependencies are finished)



RASP analysis?
Can draw head/layer analysis, eg:
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Connection to Reality?

Are our RASP programs predicting the right number of layers?

Are our RASP programs predicting relevant selector patterns?



Connection to Reality?
Example 1: reverse



Connection to Reality?

RASP analysis:

• First, length is computed  
           (1 layer, uniform attention)


• Then, length is used to create flip_s  
          (necessarily in next layer, ‘flipped’ attention)

Example 1: reverse



Connection to Reality?

RASP analysis:

 hypothesis:  reverse requires 2 layers?

Example 1: reverse

• First, length is computed  
           (1 layer, uniform attention)


• Then, length is used to create flip_s  
          (necessarily in next layer, ‘flipped’ attention)



Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse



Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:


2 layers: 99.6% accuracy after 20 epochs

1 layer: 39.6% accuracy after 50 epochs

Even with compensation for 
number of heads and parameters!



Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:


2 layers: 99.6% accuracy after 20 epochs

1 layer: 39.6% accuracy after 50 epochs

Bonus: the 2 layer transformer’s attention patterns:

Layer 1  (full_s) Layer 2  (flip_s)



Connection to Reality?
Example 2: histogram  (assuming BOS)

Eg:


[§,h,e,l,l,o]      [0,1,1,2,2,1]

[§,a,b,c,c,c]  [0,1,1,3,3,3]


[§,a,b,a]  [0,2,1,2]

↦
↦
↦
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Reminder: computing length

frac_0=aggregate(full_s, [1,0,0,0])
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Can we use a similar trick for histograms?

Trick was: send 1 from exactly one position, and then 
use weighted average to compute inverse of number 

of selected positions (for length, this was all positions)
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Connection to Reality?
Example 2: histogram  (assuming BOS)

Reminder: computing length

frac_0=aggregate(full_s, [1,0,0,0])

          . ….. 1 0 0 0  
T  T  T  T    1 0 0 0   =>  0.25  
T  T  T  T    1 0 0 0   =>  0.25  =>   [0.25,0.25,0.25,0.25] 
T  T  T  T    1 0 0 0   =>  0.25

T  T  T  T    1 0 0 0   =>  0.25

Can we use a similar trick for histograms?

Trick was: send 1 from exactly one position, and then 
use weighted average to compute inverse of number 

of selected positions (for length, this was all positions)

Specifically, what’s the challenge for histograms?

Need a known position to send 1 from!

Q:
A:

Eg:


[§,h,e,l,l,o]      [0,1,1,2,2,1]

[§,a,b,c,c,c]  [0,1,1,3,3,3]


[§,a,b,a]  [0,2,1,2]

↦
↦
↦
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Connection to Reality?
RASP analysis:

• Just one attention head

• It focuses on: 


1. All positions with same token, and:

2. Position 0 (regardless of content)

Example 2: histogram  (assuming BOS)



Connection to Reality?
RASP analysis:

• Just one attention head

• It focuses on: 


1. All positions with same token, and:

2. Position 0 (regardless of content)

Selector pattern vs trained 
transformer’s attention for same 

input sequence:

Example 2: histogram  (assuming BOS)



Insight
1. Further motivates the Universal Transformer


Recurrent blocks are like 

allowing loops in RASP!




Insight
2. Explains results of the Sandwich Transformer


s
f

self-attention

feed-forward


If re-ordering and switching attention and feed-
forward layers of a transformer (while adjusting 

to keep same number of parameters): 

1. Better to have attention earlier, and feed-

forward later

2. Only attention not enough



Insight
3. Transformers can “use” at least  of the  computational cost they have:
n log(n) n2

“selector_width” is a RASP operation that takes an arbitrary selector and computes its width, for example:
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This can be used to implement sort:

which we know requires at least  operations 
(if making no assumptions on input data)
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Insight
3. Transformers can “use” at least  of the  computational cost they have:
n log(n) n2

This can be used to implement sort:

Open Question: is there something that “uses” all  of the attention head cost?n2

“selector_width” is a RASP operation that takes an arbitrary selector and computes its width, for example:

which we know requires at least  operations 
(if making no assumptions on input data)

n log(n)



End

“Thinking Like Transformers” - ICML 2021

(Available on Arxiv)

Try it out!

   🌟  github.com/tech-srl/RASP  🌟

http://github.com/tech-srl/RASP


Optional Talking Points
• Bhattamishra et al (2020) note that, unlike LSTMs, 

transformers struggle with some regular languages. 
Why might that be? (What would a general method 
for encoding a DFA in a transformer be?)


• Hahn (2019) proves that transformers with hard 
attention cannot compute Parity with hard attention. 
RASP can compute parity. What is the difference? 


• How should we convert a RASP program to ‘real’ 
transformers? How big does our head-dimension 
need to be for “select(indices,indices,<)”? How do 
we implement and, or, and not between selectors?


• Do our selectors cover all the possible attention 
patterns? What is missing?


