
Noname manuscript No.
(will be inserted by the editor)

Extracting Automata from Recurrent Neural
Networks Using Queries and Counterexamples
(Extended Version)

Gail Weiss · Yoav Goldberg · Eran
Yahav

Received: date / Accepted: date

Abstract We consider the problem of extracting a deterministic finite au-
tomaton (DFA) from a trained recurrent neural network (RNN). We present
a novel algorithm that uses exact learning and abstract interpretation to per-
form efficient extraction of a minimal DFA describing the state dynamics of a
given RNN. We use Angluin’s L∗ algorithm as a learner and the given RNN
as an oracle, refining the abstraction of the RNN only as much as necessary
for answering equivalence queries. Our technique allows DFA-extraction from
the RNN while avoiding state explosion, even when the state vectors are large
and fine differentiation is required between RNN states.

We experiment on multi-layer GRUs and LSTMs with state-vector dimen-
sions, alphabet sizes, and underlying DFA which are significantly larger than
in previous DFA-extraction work. Aditionally, we discuss when it may be rel-
evant to apply the technique to RNNs trained as language models rather than
binary classifiers, and present experiments on some such examples. In some
of our experiments, the underlying target language can be described with a
succinct DFA, yet we find that the extracted DFA is large and complex. These
are cases in which the RNN has failed to learn the intended generalisation,
and our extraction procedure highlights words which are misclassified by the
seemingly “perfect” RNN.

Keywords Recurrent Neural Networks · Automata · Deterministic Finite
Automata · Exact Learning · Extraction

G. Weiss, E. Yahav
Technion, Israel
E-mail: {sgailw,yahave}@cs.technion.ac.il

Y. Goldberg
Bar Ilan University, Israel
E-mail: yogo@cs.biu.ac.il

2 Gail Weiss et al.

1 Introduction

In recent years, there has been significant interest in the use of neural models,
and in particular recurrent neural networks (RNNs), for learning languages.
Like other supervised machine learning techniques, RNNs are trained based
on a large set of examples of the target concept.

RNNs can reasonably approximate a variety of languages, and even pre-
cisely represent a regular language (Casey, 1998). However, they are in prac-
tice unlikely to generalise exactly to the concept being trained, and what they
eventually learn in actuality is unclear (Omlin and Giles, 2000). Indeed, sev-
eral lines of work attempt to glimpse into the RNN black-box (Zeng et al.,
1993; Omlin and Giles, 1996; Cechin et al., 2003; Jacobsson, 2005; Karpathy
et al., 2015; Li et al., 2015; Linzen et al., 2016; Strobelt et al., 2016; Lei et al.,
2016; Kádár et al., 2016; Shi et al., 2016; Adi et al., 2016; Murdoch and Szlam,
2017; Wang et al., 2017; Arras et al., 2017).

In contrast to the supervised ML paradigm, the exact learning paradigm
considers setups that allow learning a target language without approxima-
tion. For example, Angluin’s L∗ algorithm enables the learning of any regular
language, provided a teacher capable of answering membership (request to la-
bel example) and equivalence (comparison of proposed language with target
language) queries is available (Angluin, 1987).

In this work we use exact learning to elicit the true concept class of a
trained recurrent neural network. This is done by treating the trained RNN as
the teacher of the L∗ algorithm. To the best of our knowledge, this is the first
attempt to use exact learning with queries and counterexamples to extract an
automaton from a given RNN.

Recurrent Neural Networks Recurrent neural networks (RNNs) are a class
of neural networks which are used to process sequences of arbitrary lengths.
When operating over sequences of discrete alphabets, the input sequence is
fed into the RNN on a symbol-by-symbol basis. For each input symbol the
RNN outputs a state vector representing the sequence up to that point, com-
bining the current state vector and input symbol at every step to produce the
next one. An RNN is essentially a parameterised mathematical function that
takes as input a state vector and an input vector, and produces a new state
vector. The RNN is trainable, and, when trained together with a classification
component, the training procedure drives the state vectors to provide a rep-
resentation of the prefix which is informative for the classification task being
trained.

Classification An RNN can be paired with a classification component, a
classifier function that takes as input a state vector and returns a binary or
multi-class classification decision. The RNN and the classifier are combined by
applying the RNN to the sequence, and then the classifier to the final resulting
state vector. When the classification component gives a binary classification
for each state vector, the combination defines a binary classifier over sequences,
which we call an RNN-acceptor. When the component gives a distribution over

Extracting Automata from RNNs using Queries and Counterexamples 3

the possible next tokens, the combination defines a next-token distribution for
each input sequence, which we call a Language-Model RNN (LM-RNN).

A trained RNN-acceptor can be seen as a state machine in which the states
are high-dimensional vectors: it has an initial state, a well defined transition
function between internal states, and a well defined classification for each
internal state. A trained LM-RNN is not immediately analogous to a binary
state machine, but we will see in this work how it may be interpreted as a one,
and under this interpretation also extracted from using our method.

RNNs play a central role in deep learning, and in particular in natural
language processing. For more in-depth overview, see (Goodfellow et al., 2016;
Goldberg, 2016, 2017).

We now turn to the question of understanding what an RNN has actu-
ally learned. We formulate the question around RNN-acceptors, but later (in
Section 8) show how the solution relates to LM-RNNs.

Motivation Given an RNN-acceptor R trained over a finite alphabet Σ, our
goal is to extract a deterministic finite-state automaton (DFA) A that classifies
sequences in a manner observably equivalent to R. (Ideally, we would like to
obtain a DFA that accepts exactly the same language as the network, but this
is a much more difficult task.1)

Note: In this work, when understood from context, we use the term RNN to
mean RNN-acceptor. Additionally, we use “automata” to refer specifically to
deterministic finite automata (DFAs) (as opposed to other automata variants,
such as pushdown automata or weighted automata).

Previously existing techniques for DFA extraction from recurrent neural
networks are based on creating an a-priori partitioning of the RNN’s state
space, and mapping the transitions between the resulting clusters (e.g., Omlin
and Giles (1996); Zeng et al. (1993)). In this work however, we approach the
question using exact learning.

Exact Learning In the field of exact learning, concepts (sets of instances)
can be learned precisely from a minimally adequate teacher—an oracle capable
of answering two query types (Goldman and Kearns, 1995):

– membership queries: state whether a given instance is in the concept or
not

– equivalence queries: state whether a given hypothesis (set of instances) is
equal to the concept held by the teacher. If not, return an instance on
which the hypothesis and the concept disagree (a counterexample).

The L∗ algorithm (Angluin, 1987) is an exact learning algorithm for learning
a DFA from a minimally adequate teacher with knowledge of some regular
language L. In this context, the concept is L, the instances are finite sequences
(‘words’) over its alphabet, and the hypotheses are presented as automata A
defining a regular language LA. L∗ completes when the oracle accepts its latest
equivalence query, i.e. when LA = L.

1 In fact, given the results showing that some RNN architectures can count (Gers and
Schmidhuber, 2001; Weiss et al., 2018b), a DFA may not be sufficient for representing the
language learned by an RNN at all.

4 Gail Weiss et al.

Our Approach We treat DFA extraction from RNNs as an exact learning
problem. We use Angluin’s L∗ algorithm to elicit a DFA from any type of
trained RNN, using the RNN as a teacher. In doing so, we maintain only
a coarse partitioning of the RNN’s state space, refining it only as much as
necessary to answer L∗’s queries.

RNNs as Teachers A trained RNN-acceptor can trivially answer mem-
bership queries, by feeding input sequences to the network for classification.
Answering equivalence queries, however, is not so easy. The main challenge
is that no finite interpretation of the network’s states and transitions is given
upfront: the states of an RNN are high-dimensional real-valued vectors, result-
ing in an infinite state space which cannot be exhaustively enumerated and
compared to the hypothesis.

To address this challenge, we use a finite abstraction of the RNN R to
answer equivalence queries: we define a finite partitioning of the state space,
and create from it an automaton which can be compared to the hypothesis
A. A unique aspect of this setting compared to previous L∗ works is that
we only observe an abstraction of the teacher. This means that when there
is a disagreement between the teacher and the learner, it may be not that
the learner is incorrect and needs to refine its representation, but rather (or
also) that our abstraction of the teacher is not precise enough and must be
refined. Indeed, at every equivalence query, the current finite abstraction and
current proposed automaton A act as two hypotheses for the RNN R’s ground
truth, which must at least be equivalent to each other in order to both be
equivalent to R. Thus, whenever the two disagree on a sample, we find its true
classification in R, obtaining through this either a counterexample to A or a
refinement to the abstraction.

Main Contributions The main contributions of this paper are:

– We present a novel and general framework for extracting automata from
trained RNNs, using the RNNs as teachers in an exact learning setting.

– We implement2 the technique and show its ability to extract descriptive
automata in settings where previous approaches fail. We demonstrate its ef-
fectiveness on modern RNN architectures—multi-layer LSTMs and GRUs.

– We describe how the technique can be used to learn DFAs from only pos-
itive examples, and demonstrate its effectiveness in this setting. To do so
we show how to create RNN-acceptors from positive examples only, using
a language modeling objective.

– We apply our technique to RNNs trained to 100% train and test accuracy
on simple languages, and discover in doing so that some RNNs have not
generalised to the intended concept. Our method easily reveals and pro-
duces adversarial inputs—words misclassified by the trained RNN and not
present in the train or test set.

A basic version of this paper has been presented in ICML 2018 (Weiss
et al., 2018a).

2 www.github.com/tech-srl/lstar extraction

Extracting Automata from RNNs using Queries and Counterexamples 5

2 Preliminaries

In this paper we use the following notations and terminology.

Automaton and classification function A deterministic finite automaton
(DFA) A is a tuple 〈Σ,Q, i, F, δ〉, in which Σ is the alphabet, Q the set of
states, F ⊆ Q the set of accepting states, i ∈ Q the initial state, and δ :
Q×Σ → Q the transition function. For a given automaton we add the notation
f : Q→ {Acc,Rej} as the function giving the classification of each state, i.e.

f(q) = Acc ⇐⇒ q ∈ F , and the notation δ̂ : Q × Σ∗ → Q as the recursive

application of δ to a sequence, i.e.: for every q ∈ Q, δ̂(q, ε) = q, and for every

w ∈ Σ∗ and σ ∈ Σ, δ̂(q, w·σ) = δ(δ̂(q, w), σ). As an abuse of notation, use

δ̂(w) to denote δ̂(i, w).

The classification of a word w ∈ Σ∗ by a DFA A is defined A(w) = f(δ̂(w)),
and the regular language defined by A is the set of words it accepts, LA =
{w ∈ Σ∗ | A(w) = Acc}.

Two automata A and B are equivalent if LA = LB , and an automaton
A = 〈Σ,Q, i, F, δ〉 is minimal if for every automaton A′ = 〈Σ,Q′, i′, F ′, δ′〉
equivalent to A, |Q| ≤ |Q′|. Two states q1, q2 ∈ Q of an automaton A =

〈Σ,Q, i, F, δ〉 are equivalent if for every w ∈ Σ∗, f(δ̂(q1, w)) = f(δ̂(q2, w)),
and an automaton is minimal iff it has no two equivalent states.

For visual clarity, ‘sink reject states’—states q /∈ F for which δ(q, σ) = q
for every σ—are not drawn in images of DFAs in this paper. Thus for example
the second DFA in Figure 1 actually has 3 states, and rejects the sequence
“)”.

Recurrent Neural Networks An RNNR is a parameterised function gR(h, x)
that takes as input a state-vector ht ∈ Rds and an input vector xt+1 ∈ Rdi
and returns a state-vector ht+1 ∈ Rds . An RNN can be applied to a sequence
x1, ..., xn by recursive application of the function gR to the vectors xi, be-
ginning from a given initial state h0,R associated with the network. When
applying an RNN to a sequence over a finite alphabet, each symbol is deter-
ministically mapped to an input vector using either a one-hot encoding3 or
an embedding matrix, the method presented in this work is agnostic to this
choice. For convenience, we refer to input symbols and their corresponding
input vectors interchangeably.

We denote the state space of a network R by SR ⊆ Rds , and by ĝR : SR ×
Σ∗ → SR the recursive application of gR to a sequence, i.e. for every h ∈ SR,
ĝR(h, ε) = h, and for every w ∈ Σ∗ and σ ∈ Σ, ĝR(h,w·σ) = gR(ĝR(h,w), σ).
As an abuse of notation, we also use ĝR(w) to denote ĝR(h0,R, w).

RNN-acceptors A binary RNN-acceptor is an RNN with an additional func-
tion fR : SR → {Acc,Rej} that receives a state vector ht and returns an accept
or reject decision. The RNN-acceptor R is the pair of functions gR, fR with

3 A one-hot encoding assigns each symbol in an alphabet of size v to an integer i in 1, ..., v,
and maps the symbol to an indicator vector in Rv where the ith entry is 1 and the others
are 0.

6 Gail Weiss et al.

associated initial state h0,R, The classification of a word w ∈ Σ∗ by an RNN-
acceptor R is defined R(w) = fR(ĝR(w)), and the language defined by R is
the set of words it accepts, LR = {w ∈ Σ∗ | R(w) = Acc}.

A given RNN-acceptor can be interpreted as a deterministic, though possi-
bly infinite, automaton, which we do note is a more powerful model than that
of deterministic finite automata.

We drop the subscript R when it is clear from context.

Multi-layer RNNs RNNs are often arranged in layers (“deep RNNs”). In a
k-layers layered configuration, there are k RNN functions g1, ..., gk, which are
applied to an input sequence x = x1, ..., xm as follows: x is mapped by g1 to a
sequence of state vectors h1,1, ..., h1,m, and then each sequence hi,1, ..., hi,m is
mapped by gi+1 to the sequence hi+1,1, ..., hi+1,m. For such multi-layer config-
urations, we take the entire state-vector at time t to be the concatenation of
the individual layers’ state vectors: ht = h1,t· h2,t...·hk,t. Generally, the clas-
sification component of a multi-layered RNN-acceptor or LM-RNN is applied
only to the final state of the top layer: fR(ht) = f ′R(ht,x) for some f ′R.

RNN Architectures The parameterised functions gR and fR can take many
forms. The function fR can take the form of a linear transformation or a more
elaborate classifier. The original form of gR is the Elman RNN (Elman, 1990),
in which gR is an affine transform followed by a non-linearity, gR(h, x) =
tanh(W xx+Whh+b). Here W x, Wh and b are the parameters of the function
that need to be trained, and have dimensions ds × di, ds × ds, and ds × 1
respectively. Other popular forms are the Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and the Gated Recurrent Unit (GRU)
(Cho et al., 2014; Chung et al., 2014). These more elaborate functions are based
on a differentiable gating mechanism, and have been repeatedly demonstrated
to be easier to train than the Elman RNN, and to robustly handle long-range
sequential dependencies. We refer the interested readers to textbooks such
as Goodfellow et al. (2016); Goldberg (2017) or to the documentation of the
PyTorch framework (Paszke et al., 2019) for their exact forms.

Our technique is agnostic to these internal differences, treating the func-
tions fR and gR as black boxes. In our experiments, we use linear transfor-
mation for fR, and the popular LSTM and GRU architectures for gR. For
the LSTM, whose transition function is often described as converting a triplet
of input-vector, state-vector and memory-vector to a next state-vector and
memory-vector, we treat the concatenation of the state-vector and memory-
vector as a single state-vector with dimension ds = 2hs, where hs is the hidden
size of the cell.

Network Abstraction Given a neural network R with state space S and al-
phabet Σ, and a partitioning function p : S → N, Omlin and Giles (1996) pre-
sented a method for extracting a DFA for which every state is a partition from
p, and the state transitions and classifications are defined by a single sample
from each partition. Their method can be seen as a simple sheared exploration
of the partitions defined by p. The exploration begins from the partition con-
taining the initial state p(h0,R), explores according to the network’s transition

Extracting Automata from RNNs using Queries and Counterexamples 7

function gR, and shears wherever it reaches an abstract state (partition) that
has already been visited. We present it as pseudocode in Algorithm 1.

We denote by AR,p the DFA extracted by this method from a network R
and partitioning p, and denote all its related states and functions by subscript
R, p.4 Note that the algorithm is guaranteed to extract a deterministic finite
automaton (DFA) from any network and finite partitioning.

Algorithm 1 Pseudo-code of RNNR exploration with state space partitioning
p : S → N. The functions of the network are marked R subscript.

Method map transitions(R, p):
Q,F, δ ← ∅
New ← {h0,R}
while New 6= ∅ do

h← pop from New
q ← p(h)
if q /∈ Q then

Q← Q ∪ {q}
if fR(h) = Acc then F ← F ∪ {q}
for σ ∈ Σ do

h′ ← gR(h, σ)
δ ← δ ∪ {((q, σ), p(h′))}
New ← New ∪ {h′}

end

end

end

The L∗ Algorithm Angluin’s L∗ algorithm (1987) is an exact learning al-
gorithm for regular languages. The algorithm learns an unknown regular lan-
guage L over an alphabet Σ from a teacher T , generating as output a DFA
A that accepts L. In our work we implement such a teacher for L∗ around
a given RNN, and apply L∗ to this teacher directly. Therefore it is sufficient
here to limit our discussion to only the requirements of this interaction.

L∗ interacts with a teacher that must answer two types of queries: mem-
bership queries, in which the teacher must classify words presented by L∗,
and equivalence queries, in which the teacher must accept or reject automata
proposed by L∗ based on whether or not they correctly represent the tar-
get language. If the teacher rejects an automaton A, it must also provide a
counterexample—a word that A misclassifies with respect to the target lan-
guage. L∗ continues to present queries to the teacher until the teacher accepts
a hypothesis A, at which point it terminates and returns A.

The L∗ algorithm is guaranteed to always present a minimal DFA consistent
with all membership queries given so far, and we use this fact in our work.
Additionally, provided the target language T is regular, L∗ is guaranteed to
return a minimal DFA for T in polynomial time in (|Q| + |w| + |Σ|), where

4 The exact order of the exploration (i.e., selection of states from New) is not important,
but if we want to be well defined we can assume that New is FIFO and that Σ has an order
which the for loop over it follows. This would make the exploration a (sheared) BFS.

8 Gail Weiss et al.

|Q| is the number of states in that DFA, Σ is the input alphabet, and |w| is
the length of the longest counterexample given by the teacher (Angluin, 1987;
Berg et al., 2005).

3 Existing Approaches and Related Work

Soon after the introduction of the RNN (Elman, 1990), it was shown that,
when learning a regular language, a simple (“Elman-”) RNN is able to cluster
its reachable states in a manner that resembles a (not necessarily minimal)
DFA for that language (Cleeremans et al., 19895). Since then there has been
a lot of research on extracting rules, and in particular finite automata, from
RNNs. Partial surveys of these works are presented by Wang et al. (2017) and
Jacobsson (2005).

Transition Mapping In their 1996 paper, Omlin and Giles experimented on
second-order RNNs, and found that their learned states also tend to cluster
in small areas in the network state space. Through this, and an assumption
of continuity in the network behavior (i.e., small changes in the current state
lead only to small changes in the next state), they concluded that it was safe
to cluster like-valued state vectors together as one state, and traverse these
clustered states in order to recover a DFA from the RNN.

In particular, given a neural network R with state space S and alphabet Σ,
and a partitioning function p : S → N, Omlin and Giles presented a method
(Algorithm 1) for extracting a DFA abstraction of the network in which every
abstracted state is an entire partition from p, and the transitions between
abstracted states and their classifications are obtained by a single sample of
the continuous values in each such partition.

In both their own work and more recent research by others (e.g. Wang
et al., 2017), this extraction method has been shown to produce DFAs that
are reasonably representative of given second-order RNNs—provided the given
partitioning captures the differences between the network states well enough.

Quantisation For networks with bounded output values, Omlin and Giles
suggested dividing each dimension of the network state space into q ∈ N
(referred to as the quantisation level) equal intervals, yielding qds subsets of
the output space with ds being the length of the state vectors.

However, because this technique applies a uniform quantisation over the
entire output space, it suffers from inherent state explosion and does not scale
to the networks used in practice today: the original paper demonstrates the
technique on networks with 8 hidden values, whereas today’s can have hun-
dreds to thousands.

Clustering Other state-partitioning approaches use clustering (Cechin et al.,
2003; Wang et al., 2017; Cohen et al., 2017). In these approaches, an unsuper-
vised classifier such as k-means is applied to a large sample set of reachable
network states, creating a finite number of clusters. The sample states can be

5 This work references a slightly older version of (Elman, 1990).

Extracting Automata from RNNs using Queries and Counterexamples 9

found by various methods, such as a BFS exploration of the network state
space to a certain depth, or by recording all state vectors reached by the
network when applied to its train set (if available). The partitioning of the
state space defined by the clusters is then explored in a similar way to that
described by Omlin and Giles (1996). Clustering approaches yield automata
that are much smaller than those given by the partitioning method originally
proposed by Omlin and Giles, making them more applicable to networks of
today’s standards.

Weaknesses In both of these approaches the partitioning is set before the
extraction begins, with no mechanism for recognizing and overcoming overly
coarse behavior. Both approaches thus face the challenge of choosing the best
parameter value for extraction, and are generally applied several times with
different parameter values, after which the ‘best’ DFA is chosen according to
a heuristic (e.g., accuracy against RNN on the test set). Additionally, both
approaches can still have rather large state space, and—as the exploration of
the extracted DFA is performed blindly—these states cannot be merged until
the extraction is complete and the DFA can be minimised.

Note on Architectures Many of these works use second order RNNs (Giles
et al., 1990), which are shown to better map DFAs than simple RNNs (Goudreau
et al., 1994; Wang et al., 2018). In this work however, we experiment on the
popular GRU (Cho et al., 2014; Chung et al., 2014) and LSTM (Hochreiter and
Schmidhuber, 1997) architectures, as they are more widely used in practice.

3.1 Recent Works and Future Directions

Since the initial publication of this method, several other approaches for ex-
tracting DFAs have been suggested, and still other works have begun grappling
with more complicated targets such as weighted automata or context free lan-
guages.

DFAs Mayr and Yovine (2018) released an L∗-based approach for learning
DFAs from any neural network architecture, answering equivalence queries
by drawing random samples over the input alphabet and checking if they
are counterexamples to the proposed automaton. Their work analyses this
approach from a PAC learning perspective and applies also to completely
black box models, in contrast to our own work and other extraction works
listed above (which rely on access to the RNN’s hidden state from different
prefixes). In Section 7.7, we compare our method to this approach, highlighting
the advantage of the abstraction based approach to equivalence queries when
the hidden state is available.

Wang and Niepert (2019) propose state-regularised RNNs, a variant of
RNNs that is regularised towards transitioning between a finite number of
learned internal states. Their work discusses both training these new RNNs
and the recovery of DFAs from them once trained, presenting an extraction
method tailored to their proposed architecture.

10 Gail Weiss et al.

WFAs Ayache et al. (2018) use spectral learning (Balle et al. (2014)) to
extract weighted, non-deterministic finite automata (WFAs) from any black
box language model, evaluating on RNNs. Okudono et al. (2020) also apply
spectral learning for WFA extraction, but this time to whitebox RNNs, using
an adaptation of the equivalence query presented in this paper to refine the
WFA beyond the initial spectral extraction. In a later work, we adapt L∗ to a
weighted setting, extracting weighted deterministic finite automata (WDFAs)
from any black box language model (Weiss et al., 2019). Finally, more recently,
Zhang et al. (2021) expand on the partitioning and then transition-mapping
approach of the classical DFA extraction papers (Omlin and Giles, 1996) to
recover WFAs from RNNs without using exact or spectral learning.

CFGs With the understanding that some RNN architectures behave more like
counter machines (Gers and Schmidhuber, 2001; Weiss et al., 2018b; Suzgun
et al., 2019), which are more expressive than DFAs, and indeed that an RNN
in general might be trained on something more complicated than a regular lan-
guage, it becomes interesting to consider extraction of context free languages
(CFGs) from RNNs.

Recently, Yellin and Weiss (2021) use the DFA-extraction method pre-
sented in this paper as the initial step in an algorithm for extracting a sub-
class of CFGs from trained RNNs,6 and Barbot et al. (2021) apply results on
visibly pushdown languages and tree automata to extract a different subclass
of CFGs, also from trained RNNs. Independently, there exist several works on
learning (subclasses of) CFGs from queries, or from examples only, that have
not yet been applied for extraction from RNNs (Sakakibara, 1992; Yokomori,
2003; Tellier, 2006; Clark and Eyraud, 2007; Clark, 2010; Dulizia et al., 2010;
Shibata and Yoshinaka, 2016; Clark and Yoshinaka, 2016; Yoshinaka, 2019).

4 Learning Automata from RNNs using L*

In the following sections we show how to build a teacher for the L∗ algo-
rithm around a given RNN-acceptor R. The teacher must be able to answer
membership and equivalence queries as required by L∗ .

To implement membership queries we rely on the RNN classifier itself.
To determine whether a given word w is in the unknown language LR, we
simply run the RNN on this word, and check whether it accepts or rejects w.

To implement equivalence queries we check the equivalence of the L∗

hypothesised automaton A against an abstraction AR,p of the network, where
p is a partitioning over the network’s state space. If we find a disagreement
w ∈ Σ∗ between A and the current abstraction AR,p, we use R to determine
whether this is because the L∗ hypothesis is incorrect (i.e., LR(w) 6= A(w)),
or a result of a poor abstraction (i.e., LR(w) 6= AR,p(w)). In the former case
(LR(w) 6= A(w)), we end the equivalence query and return w as a counterex-
ample to L∗ . Otherwise, we refine p and restart the comparison of A and

6 By creating an algorithm for generalising CFGs from a sequence of DFAs, and using the
hypotheses provided by L∗as that sequence.

Extracting Automata from RNNs using Queries and Counterexamples 11

AR,p. If no such disagreement w is found (i.e., A and AR,p are equivalent), we
accept L∗’s hypothesis and the extraction ends.

p is maintained between equivalence queries, i.e., the partitioning p at the
start of the j+1th equivalence query is the same partitioning p from the end
of the jth equivalence query.

In theory, the extraction continues until the automaton proposed by L∗

is accepted, i.e., A and AR,p converge. In practice, for some RNNs this may
take a long time and yield a large DFA (>30,000 states). To counter this, we
place time or size limits on the interaction, after which the last L∗ hypothesis
is returned.7 We see that these DFAs still generalise well to their respective
networks.

The partitioning p has to be coarse enough to facilitate feasible computa-
tion of AR,p, but fine enough to capture the interesting observations made by
the network. As we have an iterative setting, we can satisfy this by starting
with a very coarse initial abstraction and refining it only sparingly, whenever
it is proven incorrect.

The equivalence queries are described in Section 5, and the partitioning
and its refinements in Section 6.

Note Convergence of AR,p and A does not guarantee that R and A are equiv-
alent. Providing such a guarantee would be an interesting direction for future
work.

5 Answering Equivalence Queries

Given a network R, a partitioning function p over its state space S, and a
proposed minimal automaton A, we wish to check whether the abstraction of
the network AR,p is equivalent to A, preferably while exploring as little of AR,p
as necessary. If the two are not equivalent—meaning, necessarily, that at least
one is not an accurate representation of the network R—we wish to find and
resolve the cause of the inequivalence, either by returning a counterexample
to L∗ (and so refining A), or refining the partitioning function p (and so the
abstraction AR,p) in the necessary area. Hence our equivalence query must be
able not only to return counterexamples when necessary, but also to specifically
identify overly-coarse partitions in the partitioning p.

For clarity, from here onwards we refer to the continuous network states
h ∈ S as R-states, the abstracted states in AR,p as A-states, and the states of
the L∗ DFAs A as L-states.

7 We could also return the last abstraction, AR,p, and focus on refining p over returning
counterexamples. But we find that the abstractions are often less accurate (see Section
7.8). We suspect this is due to the lack of ‘foresight’ AR,p has, as opposed to L∗’s many
separating suffix strings (loosely, L∗ works by maintaining two growing lists of ‘interesting’
prefixes and suffixes, generating an equivalence query only when all the prefixes going into
the each hypothesis state have the same classification on all of the suffixes).

12 Gail Weiss et al.

In this section we describe the details of an equivalence query assuming a
given partitioning p and refinement operation refine. We present our initial
partitioning p0 and refine operation in Section 6.

5.1 Parallel Exploration

The key intuition to our approach is the fact that A is minimal, and so each
state in the DFA AR,p should—if the two automata are equivalent—be equiv-
alent to exactly one state in the DFA A. This is based on the fact that for
automata A = 〈Σ,Q, i, F, δ〉 and A′ = 〈Σ,Q′, i′, F ′, δ′〉 in which A′ is minimal,
A and A′ are equivalent if and only if there exists a mapping m : Q → Q′

satisfying that m(i) = i′, f(q) = f ′(m(q)), and m(δ(q, σ)) = δ′(m(q), σ) for
every q, σ ∈ Q×Σ.

To check the equivalence of AR,p and A without necessarily having to
fully explore AR,p, we build such a mapping between their states on-the-fly:
we associate between states of the two automata during the extraction of
AR,p, by traversing A in parallel to the extraction of AR,p (which is extracted
according to Algorithm 1). We update this association for all R-states visited
during this extraction, i.e., including those at which the traversal is sheared.8

Any inconsistencies (conflicts) in this association are definite indicators of
inequivalence between AR,p and A.

Conflict types We refer to associations in which an accepting A-state is
associated with a rejecting L-state or vice versa as abstract classification con-
flicts. We refer to multiple but disagreeing associations for a single A-state,
i.e. situations in which one A-state is associated with two different (minimal)
L-states, as partitioning conflicts. (The inverse, in which one minimal L-state
is associated with several A-states, is not a problem: AR,p is not necessarily
minimal and so these states may be equivalent.)

Recalling that the ulterior motive is to find inconsistencies between the
proposed automaton A and the given network R, and that the exploration of
AR,p runs atop an exploration of the actual R-states, we also check at each
point during the exploration whether the current R-state h ∈ SR has identical
classification to that of the current L-state reached in the parallel traversal of
A. As the classification of a newly discovered A-state is determined by the R-
state with which it was first mapped, this also covers all abstract classification
conflicts. We refer to failures of this test generally as classification conflicts,
and check only for them and for partitioning conflicts.

5.2 Conflict Resolution and Counterexample Generation

Classification conflicts are a sign that a path w ∈ Σ∗ satisfying R(w) 6=
A(w) has been traversed in the exploration of AR,p, and so necessarily that

8 These are important: they are the repeat visits to an A-state, from which a partitioning
conflict may occur.

Extracting Automata from RNNs using Queries and Counterexamples 13

w is a counterexample to the equivalence of A and R. They are resolved by
returning the path w as a counterexample to L∗ , so that it may refine its
observations and provide a new automaton. All that is necessary for this is to
maintain the current path w throughout the exploration.

Partitioning conflicts are a sign that an A-state q ∈ QR,p, that has already
been reached with a path w1 during the exploration of AR,p, has been reached
again with a new path w2 for which the L-state is different from that of w1.
In other words, partitioning conflicts give us two sequences w1, w2 ∈ Σ∗ for
which ˆδR,p(w1) = ˆδR,p(w2) but δ̂A(w1) 6= δ̂A(w2). We denote by q1, q2 ∈
QA the L-states reached in A by these sequences, qi = δ̂A(wi). As A is a
minimal automaton, q1 and q2 are necessarily inequivalent, meaning there
exists a differentiating suffix s ∈ Σ∗ for which fA(δ̂A(q1, s)) 6= fA(δ̂A(q2, s)),

i.e. for which fA(w1·s) 6= fA(w2·s). Conversely, as ˆδR,p(w1) = ˆδR,p(w2) then
ˆδR,p(w1·s) = ˆδR,p(w2·s), and so fR,p(w1·s) = fR,p(w2·s).

Clearly in this case A and AR,p must disagree on the classification of either
w1·s or w2·s, and so at least one of them must be inconsistent with the network
R. In order to determine the ‘offending’ automaton, we pass both w1·s and
w2·s to R for their true classifications. If A is found to be inconsistent with
the network, the word on which A and R disagree is returned to L∗ as a
counterexample.

Else, w1·s and w2·s are necessarily classified differently by the network,
and AR,p should not lead w1 and w2 to the same A-state. The R-states h1 =
ĝ(w1) and h2 = ĝ(w2) are passed, along with the current partitioning p, to a
refinement operation, which refines p such that the two are no longer mapped
to the same A-state—preventing a reoccurrence of that particular conflict.

The previous reasoning can be applied to w2 with all paths w1 that have
reached the conflicted A-state q ∈ QR,p without conflict before w2 was tra-
versed. As such, the classifications of all the words w1·s are tested against the
network, prioritising returning a counterexample over refining the partition-
ing.9 If eventually it is the partitioning that is refined, then the R-state that
triggered the conflict, h = ĝ(w2), is split from all R-states h1 = ĝ(w1) for w1

that have already reached q in the exploration, in one single refinement.10

Every time the partitioning is refined, the guided exploration starts over,
and the process repeats until either a counterexample is returned to L∗, equiv-
alence is reached (exploration completes without a counterexample), or some
predetermined limit (such as time or partitioning size) is exceeded. We note
that in practice—and very often so with the decision-tree based refinement
operation that we present—there are cases in which starting over is equivalent
to merely updating the associated A-state p(h) of the R-state h that triggered

9 As we will ultimately return the last L∗ hypothesis and not the abstraction if time runs
out (see Section 7.8).
10 At least, this is the ideal case. In practice, we allow a relaxed setting where it might

only be split from some (non-empty) subset of them. In the worst case, this will trigger a
further refinement when the query is attempted again.

14 Gail Weiss et al.

the refinement and continuing the exploration from there, and we implement
our equivalence query to take advantage of this.

In our implementation, whenever we find several potential counterexamples
to the proposed DFA, we check them in order of increasing length and return
the shortest counterexample we have found.

5.3 Algorithm

Pseudocode for this entire equivalence checking procedure (ignoring preference
for shortest counterexamples) is presented in Algorithm 2.11 The description
here assumes the existence of a refinement operation refine separating in the
partitioning an R-state h from a set of other R-states H, we present such a
method in Section 6.

The overall iterative process, including the refinements to p, is desribed in
check equivalence, and the equivalence checking for a specific partitioning
p is given in parallel explore.

parallel explore attempts to build AR,p in variables Q,F, q0, δ, while
also maintaining the associations of these states to R and A as follows:

– Visitors holds for every A-state q the set of all R-states h satisfying
p(h) = q that have been visited during the exploration. This is used for
refinements triggered by partitioning conflicts.

– Path holds for every R-state h the sequence w ∈ Σ∗ with which h has
been visited during the exploration.12 This is used for generating potential
counterexamples when handling a partitioning conflict.

– Association holds for every A-state q the L-state q′ ∈ QA visited in the
parallel exploration of A the first time that q was visited. If at any point
q is visited while the parallel exploration is on a different state q′′ 6= q′, a
partitioning conflict is triggered.

Note that finding the separating suffix for two inequivalent states q1, q2 of
a given automaton A can be done by a simple parallel BFS exploration of the
states reachable from q1 and q2 in A, continuing until two states with opposite
classifications are found.

6 Abstraction and Refinement

Given a partitioning p, an R-state h, and a set of R-states H ⊆ S \ {h}, we
must refine p to obtain a new partitioning p′ satisfying:

1. for every h1 ∈ H, p′(h) 6= p′(h1), and
2. for every h1, h2 ∈ S, if p(h1) 6= p(h2) then p′(h1) 6= p′(h2).

11 And full code is available online at www.github.com/tech-srl/lstar extraction.
12 Technically this should be maintained as a set of sequences reaching h, but in practice,

the probability of there being more than one such sequence per h is too low to consider.

Extracting Automata from RNNs using Queries and Counterexamples 15

Algorithm 2 Pseudo-code for equivalence checking of an RNN R and minimal
DFA A, with initial partitioning p0. The main loop is in check equivalence.

Method update records(q, h, qA, w):
Visitors(q)← Visitors(q) ∪ {h}
Path(h)← w
Association(q)← (qA)
Push(Unexplored,h)

Method handle partition conf(q, h, qA, q
′
A):

find s ∈ Σ∗ s.t. fA(qA, s) 6= fA(q′A, s)
for h′ ∈Visitors(q) do

w ← Path(h′)·s
if fR(w) 6= fA(w) then

return Reject, w
end

end
p← refine(p, h,Visitors(q)\{h})
return Restart Exploration, ε

Method parallel explore(R,A, p):
empty all of: Q,F, δ, Unexplored, Visitors, Path, Association
q0 ← p(h0,R)
update records(q0, h0,R, qA,0, ε)

while Unexplored 6= ∅ do
h← Pop(Unexplored)
q ← p(h)
qA ← Association(q)
if fR(h) 6= fA(qA) then

return Reject, Path(h)
end
if q ∈ Q then

continue
end
Q← Q ∪ {q}
if fR(h) = Acc then

F ← F ∪ {q}
end
for σ ∈ Σ do

h′ ← gR(h, σ)
q′ ← p(h′)
δ(q, σ)← q′

q′A ← δA(qA, σ)
if q′ ∈ Q and Association(q′) 6= q′A then

return handle partition conf(q′, h′,Association(q′), q′A)
end
update records(q′, h′, q′A,Path(h)·σ)

end

end
return Accept, ε

Method check equivalence(R,A, p0):
p← p0
verdict ← Restart Exploration
while verdict = Restart Exploration do

verdict, w ← parallel explore(R,A, p)
end
return verdict,w

16 Gail Weiss et al.

The first condition separates (in the partitioning) the R-states that caused the
partitioning conflict leading to the refinement. The second condition maintains
separations made by earlier refinements, i.e., it prevents previously created
abstract states from being merged.

We want to generalise the information given by h and H well, so as not
to invoke excessive refinements as new R-states are explored. Additionally, we
would like to keep the partitioning as small as possible, so that AR,p can be
explored and compared to A in reasonable time at every equivalence query.

To keep the partitioning small, we settle on a decision tree structure, in
which each refinement only splits the partition in which the conflict was recog-
nised. Additionally, seeing that in practice our equivalence checking method
can overcome imperfect splits between H and h by generating further splits
if necessary, we relax the first condition. Specifically, we allow the classifiers
splitting between H and h in the conflicated partition to not do so perfectly,
provided they separate at least some of H from h.

Our method is unaffected by the length of the R-states, and very conser-
vative: each refinement increases the number of A-states by exactly one. Our
experiments show that it is fast enough to quickly find counterexamples to
proposed DFAs.

6.1 Initial Partitioning

In addition to a refinement method, our algorithm needs an initial partitioning
p0 from which to start the first equivalence query. As we wish to keep the
abstraction as small as possible, we begin with no state separation at all:
p0 : h 7→ 0.

6.2 Decision-Tree based Partitioning, with Support Vector Refinement

Let h ∈ S,H ⊂ S be the R-states with which a refinement was invoked. We
know the refinement is only applied to h,H satisfying p(h) = p(h′) for every
h′ ∈ H. To keep the partitioning small, we define a gentle refinement operation,
in which for every call we only split the single partition p(h). This approach
avoids state explosion by adding only one A-state per refinement.

Decision Tree It is natural to maintain a partitioning p refined over time
in this way as a decision tree, where each internal node tracks some single
refinement made to p, and its leaves are the current A-states of the abstraction.

SVM classifiers At every refinement, for the split of p(h), we would like to
allocate a region around the R-state h that is large enough to contain other
R-states that behave similarly, but separate from neighbouring R-states that
do not. We achieve this by fitting an SVM (Boser et al., 1992) classifier with
an RBF kernel13 to separate h from H (splitting the partition p(h) in exactly

13 While we see this as a natural choice, other kernels or classifiers may yield similar results.
We do not explore such variations in this work.

Extracting Automata from RNNs using Queries and Counterexamples 17

two). The max-margin property of the SVM ensures a large space around h,
while the Gaussian RBF kernel allows for a non-linear partitioning of the space.
We use this classifier to split the A-state p(h), yielding a new partitioning p′

with exactly one more A-state than p.

Whenever the SVM successfully separates h from H entirely, this approach
satisfies the requirements of refinement operations. Otherwise, the method
fails to satisfy condition 1 of the refinement operation. Nevertheless, the SVM
classifier will always separate at least one of the R-states h′ ∈ H from h, and
later explorations can invoke further refinements if necessary. In practice we
see that this does not hinder the main goal of the abstraction, which is finding
counterexamples to equivalence queries.

Unlike mathematically defined partitionings such as the quantisation pro-
posed by Omlin and Giles (1996), our abstraction’s storage is linear in the
number of A-states it can map to; and computing an R-state’s associated A-
state may be linear in this number as well (e.g. if the decision tree is a chain).
Luckily, as this number of A-states also grows very slowly (linearly in the
number of refinements), this does not become a problem.

6.3 Practical Considerations

As the initial partitioning and the refinement operation are very coarse, our
method runs the risk of accepting very small but wrong DFAs early in the
extraction.

To counter this, two measures are taken:

1. At the beginning of extraction, one accepting and one rejecting sequence
are provided to the teacher, and then checked as potential counterexamples
at the beginning of every equivalence query.14 Conversely, if these are not
available, equivalence queries are extended with n random samples for some
small n (e.g. n = 100) and range of lengths (e.g. 0-100): whenever A
and AR,p are equivalent, n random samples are generated and checked as
potential counterexamples (A(w) 6= R(w)) before A can be accepted.

2. The first refinement is aggressive, generating a greater (but still manage-
able) number of A-states than made with the main single-partition split
approach used for the rest of the extraction.

The first measure is taken specifically to prevent erronous termination of the
extraction on a single state automaton, and requires only two samples (if
provided) or short additional time before accepting an equivalence query.

The second measure prevents the extraction from too readily terminating
on small DFAs, by creating a (manageably) large AR,p that will hopefully
capture a relatively rich representation of the RNN. Our method for it is
presented in Section 6.3.1.

14 When using these in our experiments, we used the shortest possible examples, e.g., the
empty sequence and) for the balanced parentheses language.

18 Gail Weiss et al.

6.3.1 Aggressive Difference-based Refinement

At the first refinement, instead of splitting p0(h) to separate h from all or most
of H using a single SVM, we split S in its entirety across multiple dimensions
chosen according to h and H. Specifically, we calculate the mean hm of H,
find the d dimensions with the largest gap between h and hm, and then split
S along the middle of that gap for each of the d dimensions.

The resulting partitioning can be comfortably stored in a decision tree of
depth d. It is intuitively similar to that of the quantisation suggested by Omlin
and Giles, except that it focuses only on the dimensions with the greatest
deviation of values between the states being split, and splits the ‘active’ range
of values.

The value d may be set by the user, and increased if the extraction is
suspected to have converged too soon. We found that d = 10 generally provides
a strong enough initial partitioning of S, without making the abstraction too
large for feasible exploration.

7 Experimental Results

We first demonstrate the effectiveness of our method on LSTM- and GRU-
acceptors15 trained on the Tomita grammars (1982), which have been used as
benchmarks in previous automata-extraction work (Wang et al., 2017), and
then on substantially more complicated languages. We show the effectiveness
of our refinement-based equivalence query approach over that of plain random
sampling and present cases in which our method extracts informative DFAs
where other approaches fail. In addition, for some seemingly perfect networks,
we find that our method quickly returns counterexamples representing devia-
tions from the target language.

We clarify that when we refer to extraction time for any method, we con-
sider the entire process: from the moment the extraction begins, to the moment
a DFA is returned.16

Prototype Implementation and Settings We implemented all methods in Python,
using PyTorch (Paszke et al., 2019) and scikit-learn (Pedregosa et al., 2011).
For the SVM classifiers, we used the SVC variant, with regularisation factor
C = 104 to encourage perfect splits and otherwise default parameters—in
particular, the RBF kernel with gamma value 1/(num features).

15 While many previous automata-extraction works evaluate on second-order RNNs (Giles
et al., 1990), we evaluate on the more popular LSTM and GRU architectures. We note
that with the exception of quantisation-based partitioning (Omlin and Giles, 1996), which
requires minor adaptation for unbounded RNN state space, all of these methods—including
our own—can be applied to any RNN architecture.
16 Covering among others: abstraction exploration, abstraction refinements (including

training SVM classifiers), and L∗ refinements (for our method), and total time for all cre-
ated DFAs (for k-means clustering). Unless otherwise stated, this time is measured using
the process time method in python’s time module.

Extracting Automata from RNNs using Queries and Counterexamples 19

All training and extraction was done on amazon instances of type p3.2xlarge,
except for the BP and email classifier RNNs which were run on p2.xlarge.

7.1 Languages

We consider the Tomita Grammars (7.4.1), and more complicated regular lan-
guages defined by small, randomly sampled DFAs (7.4.2). We also consider the
language of legal email addresses (defined precisely in 7.9.1), and the language
of balanced parentheses (BP): the set of sequences over ()a-z in which the
parentheses are balanced, e.g. a(a)ba and ()(()).

7.2 Sample Sets and Training

Tomita and Random Regular Languages We use train, validation, and test sets
of sizes 5000, 1000 and 1000 containing samples of lengths 1-100 (uniformly
distributed). To get ‘representative’ sample sets, we define a distribution over
each DFA’s state transitions favouring transitions which do not reduce the
number of reachable states,17 sample from that distribution, and train the
RNN to provide correct output for all prefixes of every sample (as opposed
to only the full samples).18 We train these RNNs with the Adam optimiser,
using initial learning rate 0.0003, an exponential learning rate scheduler with
gamma 0.9, and dropout 0.1. Each RNN was trained for up to 100 epochs on
its train set, or until the validation set had 100% accuracy for 3 epochs in a
row, whichever came sooner.

Balanced Parentheses and Email Addresses We generated positive samples
using tailored functions,19 and negative samples as a mix of both random
sequences and mutations of the positive samples.20 Here we train the RNN
only on the full samples (as opposed to classifying every prefix). We trained
all networks to 100% accuracy on their train sets, and considered only those
that reached 99.9+% accuracy on a test set consisting of up to 1000 uniformly
sampled words of each of the lengths n ∈ 1, 4, 7, ..., 28. The positive to neg-
ative sample ratios in the test sets were not controlled. The BP and email
train sets were randomly generated during training. The BP train set created
≈44600 samples, of which ≈60% were positive for each RNN, and reached

17 (E.g., a transition into a sink reject state—unless it also comes from the sink reject
state—reduces the number of reachable states.)
18 The intuition behind this choice is that every ‘irreversible’ transition in the DFA (e.g.,

the first 0 in a sample for Tomita 1, the language of sequences containing only 1) is delated,
increasing the time spent in the states before them, which might otherwise be underrepre-
sented in the samples.
19 For instance, a function that creates emails by uniformly sampling 2 sequences of length

2−8, choosing uniformly from the options .com, .net, and all .co.XY for X,Y lowercase
characters, and then concatenating the three with an additional @.
20 With mutations obtained by adding, removing, changing, or moving up to 9 characters.

20 Gail Weiss et al.

balanced parentheses up to depth 11. The email addresses train set created
40000 samples.

7.3 Details on Our Extraction (Practical considerations)

We apply the measures discussed in Section 6.3 as follows: First, for all net-
works, we apply our method with aggressive initial refinement depth d = 10
(Section 6.3.1). Second, we use additional counterexamples:

Additional Counterexamples For the Tomita and random DFA languages, dur-
ing extraction, we used random samples as additional potential counterex-
amples. Specifically, whenever an equivalence query was going to accept, we
considered an additional 100 potential counterexamples, each generated as fol-
lows: first, we choose a length from 0 − 10 (uniformly), and then uniformly
sample a sequence of that length over the RNN input alphabet.

For BP and email addresses, during extraction, we presented each RNN
along with one positive and one negative sample to check for counterexam-
ples at each equivalence query. These were chosen as the shortest positive and
shortest negative word in the train set of the RNN, in particular: for BP, the
initial samples were the empty sequence (positive) and) (negative), and for
emails, the initial samples were 0@m.com (positive) and the empty sequence
(negative). For BP, these samples are covered anyway by L∗’s initial member-
ship queries, but for email addresses the positive sample helps ‘kick off’ the
extraction, preventing the method from accepting an automaton with a single
(rejecting) state.

No further parameter tuning was required to achieve our results.

7.4 Small Regular Languages

7.4.1 The Tomita Grammars

The Tomita grammars (1982) are the following 7 languages over Σ = {0, 1}:

1. 1∗

2. (10)∗

3. The complement of ((0|1)∗0)∗1(11)∗(0(0|1)∗1)∗0(00)∗(1(0|1)∗)∗, i.e.:
all sequences w which do not contain an odd series of 1s followed later by
an odd series of 0s

4. All words w not containing 000,
5. All w for which #0(w) and #1(w) are even (where #a(w) is the number

of a’s in w),
6. All w for which (#0(w)−#1(w)) ≡3 0, and
7. 0∗1∗0∗1∗.

Extracting Automata from RNNs using Queries and Counterexamples 21

They are the languages classically used to evaluate DFA extraction from RNNs.

We trained one 1-layer GRU network with hidden size 50 for each Tomita
grammar (7 GRUs in total), in the manner described in Section 7.2. In train-
ing, all but one of the RNNs reached 3 consecutive epochs with 100% val-
idation set accuracy within 10 epochs, and reached 100% test set accuracy.
The 6th Tomita grammar was harder to train, with the RNN reaching only
78% validation accuracy after 100 epochs. As our focus is on extraction rather
than training, we repeated training on this language, eventually obtaining an
RNN with perfect train and validation accuracy for this language as well (this
time with initial learning rate 0.0004 and gamma 0.95). We then applied our
method to extract from the perfectly trained RNNs.

For each one, our method correctly extracted and accepted the target gram-
mar in under 1 second.

7.4.2 Random Small Regular Languages

Though the Tomita grammars are a popular language set for evaluating DFA
extraction from RNNs, they are quite simple: the largest Tomita grammars
are still only 5-state DFAs over a 2-letter alphabet. As our method performed
so well on these grammars, we expand to more challenging languages.

We considered randomly-generated minimal DFAs of varying complex-
ity, specifically, DFAs with alphabet size and number of states (|Σ|, |Q|) =
(3, 5), (5, 5) and (3, 10). For each combination we randomly generated 10 mini-
mal DFAs, making 30 DFAs overall. For each DFA we trained 6 2-layer RNNs:
3 GRUs and 3 LSTMs, each with hidden state sizes ds = 50, 100 and 500, this
makes 180 RNNs overall. The training method is described in Section 7.2. We
applied our extraction method to each of these RNNs, with a time limit of 30
seconds (after which the last L∗ hypothesis is returned) and initial split depth
and counterexamples as described in Section 7.3. The results of these experi-
ments are shown in Table 1. Each row in the table represents the average of
10 extractions.

Most extractions completed before the time limit, having reached equiva-
lence.21 We compared the extracted automata against the networks on their
training sets and on 1000 randomly generated word samples for each of the
word-lengths 10,50,100 and 1000. In all settings (hidden size, alphabet size,
and DFA size) where the RNNs achieved 100% test set accuracy, our extrac-
tion obtained DFAs with perfect accuracy against their RNNs. For two RNNs
which reached 99% accuracy, our extraction achieved 99% accuracy against
the RNNs, and for the two RNNs with less than 99% accuracy our extraction
achieved on average ≥ 88% accuracy for all evaluation sets.

22 Gail Weiss et al.

Extraction from LSTM Networks — Our Method
max RNN Average Extracted DFA Accuracy

ds |Σ| |QT | Time (s) |QA| #c-exs |c-ex| Acc. l=10 l=50 l=100 l=1000 Train
50 3 5 6.82 10.8 2.5 12 1.0 1.0 1.0 1.0 1.0 1.0
100 3 5 4.09 5.0 2.0 10 1.0 1.0 1.0 1.0 1.0 1.0
500 3 5 10.03 5.0 1.8 10 1.0 1.0 1.0 1.0 1.0 1.0
50 5 5 16.66 19.9 3.0 8 0.99 0.99 0.99 0.99 0.99 0.99
100 5 5 12.53 6.6 2.4 12 1.0 1.0 1.0 1.0 1.0 1.0
500 5 5 18.34 5.0 2.3 8 1.0 1.0 1.0 1.0 1.0 1.0
50 3 10 30.97 67.8 5.2 9 0.91 0.92 0.88 0.88 0.88 0.89
100 3 10 21.15 23.4 4.6 18 0.99 1.0 0.99 0.99 0.99 0.99
500 3 10 16.27 10.0 4.0 9 1.0 1.0 1.0 1.0 1.0 1.0

Extraction from GRU Networks — Our Method
max RNN Average Extracted DFA Accuracy

ds |Σ| |QT | Time (s) |QA| #c-exs |c-ex| Acc. l=10 l=50 l=100 l=1000 Train
50 3 5 4.85 5.0 2.0 13 1.0 1.0 1.0 1.0 1.0 1.0
100 3 5 3.22 5.0 2.0 10 1.0 1.0 1.0 1.0 1.0 1.0
500 3 5 6.29 5.0 1.8 10 1.0 1.0 1.0 1.0 1.0 1.0
50 5 5 15.98 11.8 2.8 16 1.0 1.0 1.0 1.0 1.0 1.0
100 5 5 7.22 5.0 2.4 18 1.0 1.0 1.0 1.0 1.0 1.0
500 5 5 12.3 4.9 2.1 8 1.0 1.0 1.0 1.0 1.0 1.0
50 3 10 29.09 76.2 5.6 11 0.94 0.97 0.92 0.92 0.92 0.93
100 3 10 13.88 23.3 4.7 20 1.0 1.0 1.0 1.0 1.0 1.0
500 3 10 12.01 10.0 3.8 9 1.0 1.0 1.0 1.0 1.0 1.0

Table 1: Results for DFA extracted using our method from 2-layer GRU and
LSTM networks with various state sizes, trained on random regular languages
of varying sizes and alphabets. Each row in each table represents 10 experi-
ments with the same parameters (network hidden-state size ds, alphabet size
|Σ|, and minimal target DFA size |QT |). In each experiment, a random DFA
is generated and an RNN is trained on it, after which a DFA is extracted
from and compared to the RNN. The column |QA| represents the size of the
final returned DFA, #c-exs describes how many counterexamples were used
during extraction, max |c-ex| describes their maximum length, and RNN Acc.
is the accuracy of the trained RNN on its test set. Each column represents the
average of the 10 experiments, except for max |c-ex| which gives the overall
maximum counterexample used across all RNNs in that row. Each extraction
was run with a time limit of 30 seconds, and whenever an extraction timed
out the last automaton proposed by L∗ was taken as the extracted automaton.
For the accuracies on the different lengths, 1000 random words of each length
were sampled and evaluated, and for the accuracy on the training set all of
the RNN’s training set was evaluated (i.e., comparing DFA against RNN).

7.5 Comparison with a-priori Quantisation

In their 1996 paper, Omlin and Giles suggested partitioning the network state
space by dividing each state dimension into q equal intervals, with q being
the quantisation level. We tested this method on each of our small regular

21 Though this is not necessarily a guarantee of true equivalence, it does generally indicate
strong similarity.

Extracting Automata from RNNs using Queries and Counterexamples 23

Extraction from LSTM Networks — Quantisation
RNN Extracted DFA Accuracy × Coverage

ds |QT | |Σ| Time (s) |QA| Acc. l=10 l=50 l=100 l=1000 Train

50 5 3 100.17 16868 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
100 5 3 237.06 40088 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
500 5 3 469.64 60295 1.0 1.0×1.0 1.0×0.53 1.0×0.42 1.0×0.21 1.0×0.59
50 5 5 283.83 29472 0.99 0.99×1.0 0.99×1.0 0.99×1.0 0.99×1.0 0.99×1.0
100 5 5 469.88 47873 1.0 1.0×1.0 1.0×0.94 1.0×0.91 1.0×0.79 1.0×0.95
500 5 5 503.68 39508 1.0 1.0×0.03 -1×0.0 -1×0.0 -1×0.0 1.0×0.08
50 10 3 434.75 77538 0.91 0.98×1.0 0.94×0.58 0.97×0.44 0.94×0.31 0.97×0.65
100 10 3 500.62 83402 0.99 1.0×1.0 1.0×0.46 1.0×0.32 1.0×0.02 1.0×0.55
500 10 3 502.84 64720 1.0 1.0×1.0 -1×0.0 -1×0.0 -1×0.0 1.0×0.12

Extraction from GRU Networks — Quantisation
RNN Extracted DFA Accuracy × Coverage

ds |QT | |Σ| Time (s) |QA| Acc. l=10 l=50 l=100 l=1000 Train

50 5 3 102.48 21359 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
100 5 3 239.93 49203 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
500 5 3 501.37 82933 1.0 1.0×1.0 1.0×0.22 1.0×0.13 1.0×0.0 1.0×0.35
50 5 5 335.37 42008 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
100 5 5 500.34 60089 1.0 1.0×0.98 1.0×0.77 1.0×0.67 1.0×0.41 1.0×0.8
500 5 5 502.31 49206 1.0 1.0×0.02 -1×0.0 -1×0.0 -1×0.0 1.0×0.08
50 10 3 500.42 100417 0.94 1.0×1.0 0.99×0.4 0.99×0.27 0.98×0.14 0.99×0.51
100 10 3 500.42 103488 1.0 1.0×1.0 1.0×0.51 1.0×0.34 1.0×0.06 1.0×0.58
500 10 3 501.93 82378 1.0 1.0×1.0 -1×0.0 -1×0.0 -1×0.0 1.0×0.12

Table 2: Results for DFA extracted using a simple partitioning of the RNN
state space, in which each state dimension is split into q = 2 equal segments
(positive and negative). The extractions were applied to the same RNNs as
in Table 1, with each row representing 10 experiments as before. |QA| again
reports the (average) number of states in the extracted DFAs, though this time
it is rounded for clearer presentation. The extractions were run with a time
limit of 500 seconds. This time, instead of reporting only the accuracy of the
extracted DFAs against their RNNs on different samples sets, we also report
their coverage: the fraction of samples for which the DFAs have a classification
at all (i.e., do not have missing transitions). The accuracy is computed only on
covered sequences, and we write report the accuracy as −1 when all extractions
in the row have 0 coverage for that set. For example: 1.0×0.12 tells us that
only 12% of samples have full transitions in the extracted DFA, but that for
those 12%, the DFA accuracy against the RNN is perfect.

language RNNs (Section 7.4.2), with q = 2 and a time limit of 500 seconds to
avoid excessive memory consumption.22

In many cases, we found that 500 seconds was not enough time for this
method to extract a complete DFA from our RNNs.23 To enable some com-
parison, we allow the method to return incomplete DFAs, i.e. DFAs in which
some transitions are missing, and we move from evaluating just the accuracy

22 LSTMs have unbounded state space, which makes quantisation challenging. Specifically
for q = 2 however, we just split each dimension along 0.
23 This is because the quantisation method, even for the smallest possible q (q = 2),

generates far more partitions than can be traversed within the time limit (qds where ds is
the RNN state size, and ds ≥ 50 in our case). Note that this is in contrast to our method:
our method only applies this quantisation method on d initial dimensions for user-defined d
(typically ≤ 10), before continuing with only very gentle refinements as needed.

24 Gail Weiss et al.

of a DFA to evaluating both its accuracy and its coverage, with coverage being
the fraction of samples for which it has a full transition path.

We provide the results of extracting with this method in Table 2, which
uses the exact same RNNs as in Table 1.

The extracted DFAs are very large—with some even having 100,000 states–
and yet their coverage of sequences of length 1,000 and even 100 tends to zero
as the RNN complexity (state size ds, or RNN target language complexity)
increases. For the covered sequences, the extracted DFA’s accuracy was often
very high (99+%), suggesting that quantisation—while impractical—is suf-
ficiently expressive to describe a network’s state space. However, it is also
possible that the sheer size of the quantisation (250 for our smallest RNNs,
and more for others) simply allowed each explored R-state its own A-state,
giving high accuracy just by observation bias (only covered sequences could
have their accuracy checked).

This is in contrast to our method, which always returns complete DFAs,24

and which consistently extracted accurate DFA from the same networks in
a fraction of the time and memory used by the plain quantisation approach.
This is because our method maintains from a very early point in extraction
a complete DFA A that constitutes a constantly improving approximation of
the considered RNN.

7.6 Comparison with k-Means Clustering

Next, we implemented a simple k-means clustering and extraction approach
and applied it to the same networks from Section 7.4.2 with varying k.

Specifically, for each RNN, we sampled N = 5000 unique prefixes from its
train set, computed the states reached from them in the RNN, and used k-
means clustering to partition the state space according to those states for each
of k = 1, 6, 11, ..., 31.25 We then mapped the transitions of each partitioning
to create 7 potential DFAs, and evaluated each one against the RNN on its
1000-sample test set to choose the best.

k-means has a well defined and ‘reasonably quick’ stopping condition: the
number of RNN states visited, and the number of clusters to be created and
traversed from them, is given as input to the extraction.26 Hence for this
extraction we do not use a time limit, allowing the method to extract all of
its potential DFAs in full, evaluate them, and return the best DFA. As done
for the other methods, we measure for k-means the total time from beginning
the extraction until a single final DFA is returned. In particular, this covers

24 Provided L∗ manages to generate at least one equivalence query before the time limit,
which we observe to always happen in practice (usually taking ≤1 second).
25 Using sklearn.cluster.KMeans.
26 This is in contrast to our method, which may continue to refine its hypothesis indefi-

nitely without ever reaching equivalence (consider for example an RNN that has learned a
non-regular language), or quantisation, which creates so many partitions in modern-sized
architectures (250 even for our smallest networks and quantisation level) that it cannot be
used without adding some time or size limit.

Extracting Automata from RNNs using Queries and Counterexamples 25

Extraction from LSTM Networks — k-means Clustering
RNN Average Extracted DFA Accuracy

ds |Σ| |QT | Time (s) |QA| k Acc. l=10 l=50 l=100 l=1000 Train
50 3 5 48.93 4.5 25.5 1.0 0.85 0.85 0.85 0.85 0.85
100 3 5 69.85 3.9 20.0 1.0 0.82 0.81 0.81 0.81 0.81
500 3 5 274.96 5.0 18.5 1.0 0.87 0.85 0.86 0.85 0.86
50 5 5 53.13 3.3 18.5 0.99 0.8 0.8 0.8 0.79 0.8
100 5 5 84.48 4.3 18.0 1.0 0.83 0.83 0.83 0.82 0.83
500 5 5 289.63 5.6 24.0 1.0 0.98 0.97 0.98 0.97 0.98
50 3 10 52.74 6.4 19.5 0.91 0.67 0.66 0.65 0.67 0.67
100 3 10 63.06 12.0 27.5 0.99 0.8 0.75 0.75 0.74 0.76
500 3 10 250.99 11.6 28.0 1.0 0.93 0.89 0.89 0.89 0.9

Extraction from GRU Networks — k-means Clustering
RNN Average Extracted DFA Accuracy

ds |Σ| |QT | Time (s) |QA| k Acc. l=10 l=50 l=100 l=1000 Train
50 3 5 21.95 5.0 14.5 1.0 0.99 1.0 1.0 1.0 1.0
100 3 5 24.89 4.9 12.0 1.0 1.0 1.0 1.0 1.0 1.0
500 3 5 85.46 5.0 13.5 1.0 0.99 1.0 1.0 1.0 1.0
50 5 5 22.74 5.4 20.0 1.0 1.0 1.0 1.0 1.0 1.0
100 5 5 29.13 5.0 18.5 1.0 1.0 1.0 1.0 1.0 1.0
500 5 5 91.68 5.1 19.0 1.0 1.0 1.0 1.0 1.0 1.0
50 3 10 27.98 12.4 28.5 0.94 0.87 0.84 0.84 0.83 0.85
100 3 10 27.15 10.5 31.0 1.0 0.96 0.94 0.94 0.94 0.94
500 3 10 92.63 10.0 28.5 1.0 0.99 0.98 0.99 0.98 0.99

Table 3: Results for DFA extracted using k-means clustering from the same
2-layer GRU and LSTM networks considered in Table 1, i.e., each row repre-
sents the average results of 10 experiments as before, and considers the exact
same trained RNNs. The extractions did not have a time limit, instead, the
number of states sampled was set to 5000 and the k values considered were
k = 1, 6, 11, ..., 31. The accuracies were evaluated on the same sample sets as
in Table 1.

sampling once all 5000 RNN states (generally <10 seconds), making a k-state
DFA from these RNN states by applying k-means clustering to them (taking
from <1 to ∼50 seconds for each k, depending on the states and on k), and
finally choosing the best DFA by evaluating on the test set (generally <10
seconds). We note that the bulk of the extraction time is spent in clustering
the sampled states into different numbers of clusters k.

In Table 3 we report the results of these extractions. In particular, we report
the time (in seconds) spent on each full extraction, the number of clusters k
used for each best DFA, each DFA’s size |QA| after minimisation, and of course
each extracted DFA’s accuracy against the same sample sets as before (i.e., as
in 1).

For the GRU networks trained on smaller DFAs (which reached 100% test-
set accuracy), k-means clustering is as successful as our method, often return-
ing a DFA with perfect or near-perfect accuracy against the target RNN. For
the LSTMs and the larger DFAs however, our method obtains far higher ac-
curacy, and often in less time. The difference in success on the LSTMs and
GRUs is curious, we leave this question open in this work.

26 Gail Weiss et al.

7.7 Comparison with Random Sampling For Counterexample Generation

For 3 of the Tomita grammars (specifically, Tomitas 3,4, and 7), the first
counterexample returned in our extraction (Section 7.4.1) was actually created
by the initial random sampling. Moreover, for all of the Tomita grammars,
answering all equivalence queries using a random sampler alone (with up to
1, 000 samples per query) was successful at extracting the grammars from the
RNNs, and this was also true for many of the languages considered in Section
7.4.2. The termination is slightly slower than our own, to allow for sampling
many potential counterexamples before accepting the L∗ hypothesis, but still
fast enough to make random sampling seem appealing (the method spent
≈ 10 seconds on each Tomita grammar). Indeed, Mayr and Yovine (2018)
even suggest such a method in their recent work, analysing it from a PAC
perspective.

Given this, the question may arise whether there is at all merit to the ex-
ploration and refinement of abstractions of the network, as opposed to a simple
random sampling approach to counterexample generation for L∗ equivalence
queries.

In this section we show the advantage of our method for counterexample
generation, through the example of balanced parentheses (BP): the language
of sequences with correctly balanced parentheses over the alphabet ()a-z. BP
is not a regular language, but the attempt to approximate it with DFAs, and
in particular the search for counterexamples to proposed DFAs, proves infor-
mative. In particular, when sampling the tokens with uniform distribution,
the probability of randomly generating a sequence with nested and correctly
balanced parentheses over the BP alphabet is very low. This prevents the ran-
dom sampler from finding counterexamples to L∗’s proposed automata, each
of which accept balanced parentheses to a bounded depth (see Examples in
Figure 1), highlighting the advantage of our approach.

We train one GRU and one LSTM network on BP, each with 2 layers
and hidden dimension 50. We extract DFAs from these networks using L∗,
generating counterexamples once with our method and once with a random
counterexample generator. The random counterexample generator works as
follows: for each equivalence query, it randomly samples sequences over the
input alphabet Σ until a counterexample (sample on which A and the RNN
disagree) is found. In particular, for each length l = 1, 2, 3, ... and increasing
until a counterexample is found, it generates and compares up to 1000 random
samples of length l, with uniform distribution.

We allowed each method 400 seconds27 to extract an automaton from net-
works trained to 100% train set accuracy. The accuracy of these extracted
automata against the original networks on their training sets is recorded in
Table 4, as well as the maximum parentheses nesting depth the L∗ proposed
automata reached during extraction.

27 Timed using the clock() method from python’s time module.

Extracting Automata from RNNs using Queries and Counterexamples 27

Accuracy on Train Set Max Nesting Depth
Network Our Method Random Our Method Random ds #Layers
GRU 99.98 87.12 8 2 50 2
LSTM 99.98 94.19 8 3 50 2

Table 4: Accuracy of extracted automata against their networks, which were
trained to 100% training accuracy on the balanced parentheses (BP) language.
The comparisons were done on the training sets of the networks. The maximum
nesting depth the extracted automata reached while still behaving as BP is
recorded (the GRU network ultimately returned a more complex automaton
than the one extracted from the LSTM network, but this automaton no longer
behaved as BP and so we have no reasonable measure for its ‘depth’). The
hidden size ds and the number of layers in each network is also noted. (For
the LSTM network, this is the size of both the memory and the cell vectors,
meaning the total hidden size of a single cell in this network is twice as big as
the value listed.)

Fig. 1: Select automata of increasing size for recognising balanced parentheses
over the 28 letter alphabet a-z,(,), up to nesting depths 1 (flawed), 1 (correct),
2, and 4, respectively. In this and in all following automata figures, the initial
state is an octogon, accepting states have a double border, and sink reject
states (rejecting states whose transitions all lead back to themselves) are not
drawn.

28 Gail Weiss et al.

Fig. 2: Automaton with vague resemblance to the BP automata of Figure 1,
but no longer representing a language of balanced parentheses up to a certain
depth. (Showing how a trained network may be overfitted past a certain sample
complexity.)

Extracting Automata from RNNs using Queries and Counterexamples 29

Refinement-based vs. Brute-Force Counterexample Generation
on the Balanced Parentheses Language

GRU
Refinement Based Brute Force

Counterexample Time (seconds) Counterexample Time (seconds)
)) 1.1)) 0.4
(()) 1.2 (()i)ma 32.6
((())) 2.1
(((()))) 3.1
((((())))) 3.8
(((((()))))) 4.4
((((((())))))) 6.6
(((((((()))))))) 9.2
((((((((v()))))))) 10.7
((((((((a()z))))))))) 8.3

LSTM
Refinement Based Brute Force

Counterexample Time (seconds) Counterexample Time (seconds)
)) 1.4)) 1.5
(()) 1.6 tg(gu()uh) 57.5
((())) 3.1 ((wviw(iac)r)mrsnqqb)iew 231.5
(((()))) 3.1
((((())))) 3.4
(((((()))))) 4.7
((((((())))))) 6.3
(((((((()))))))) 9.2
((((((((())))))))) 14.0

Table 5: Extraction of automata from GRU and LSTM networks trained to
100% accuracy on the training set for the language of balanced parentheses
over the 28-letter alphabet a-z,(,). Each table shows the counterexamples
and the counterexample generation times for each of the successive equiva-
lence queries posed by L∗ during extraction, for both our method and a brute
force approach. Generally, each successive equivalence query from L∗ for ei-
ther network was an automaton classifying the language of all words with
balanced parentheses up to nesting depth n, with increasing n. The exception
to this comes after the penultimate counterexample in the extraction from the
GRU network, in which a word with unbalanced parentheses was returned as
a counterexample to L∗ (whose automaton currently rejects it).

We list the counterexamples and counterexample generation times for each
of the BP network extractions in Table 5. Note the succinctness and the gen-
eration speed of the counterexamples generated by our method: excluding two
samples at the end of the GRU extraction, they are clear of the ‘neutral’ to-
kens a-z and of repeating parentheses (e.g., ()()), as these were not necessary
to advance the automata learned by L∗ (Figure 1). In contrast, the random
sampling method has difficulty finding legally balanced sequences, taking a
long time to find counterexamples at all, and including many ‘uninformative’
neutral tokens in its results.

30 Gail Weiss et al.

Extraction from LSTM Networks — Our Method (No Heuristics)
max RNN Average Extracted DFA Accuracy

ds |Σ| |QT | Time (s) |QA| #c-exs |c-ex| Acc. l=10 l=50 l=100 l=1000 Train
50 3 5 0.26 2.2 0.2 3 1.0 0.63 0.64 0.63 0.63 0.64
100 3 5 0.21 2.1 0.1 3 1.0 0.64 0.65 0.63 0.64 0.64
500 3 5 0.23 2.1 0.1 3 1.0 0.64 0.65 0.63 0.64 0.64
50 5 5 0.25 1.8 0.0 - 0.99 0.74 0.74 0.74 0.74 0.75
100 5 5 0.2 1.8 0.0 - 1.0 0.74 0.74 0.74 0.74 0.75
500 5 5 0.29 1.8 0.0 - 1.0 0.74 0.74 0.74 0.74 0.75
50 3 10 9.52 15.8 1.6 8 0.91 0.66 0.65 0.65 0.65 0.66
100 3 10 0.65 2.4 0.3 5 0.99 0.58 0.56 0.57 0.57 0.58
500 3 10 0.16 1.7 0.0 - 1.0 0.55 0.54 0.54 0.55 0.55

Extraction from GRU Networks — Our Method (No Heuristics)
max RNN Average Extracted DFA Accuracy

ds |Σ| |QT | Time (s) |QA| #c-exs |c-ex| Acc. l=10 l=50 l=100 l=1000 Train
50 3 5 0.16 2.1 0.1 3 1.0 0.64 0.65 0.63 0.64 0.64
100 3 5 0.16 2.0 0.0 - 1.0 0.66 0.67 0.66 0.66 0.67
500 3 5 0.2 2.0 0.0 - 1.0 0.66 0.67 0.66 0.66 0.67
50 5 5 0.19 1.8 0.0 - 1.0 0.74 0.74 0.74 0.74 0.75
100 5 5 0.18 1.8 0.0 - 1.0 0.74 0.74 0.74 0.74 0.75
500 5 5 0.21 1.8 0.0 - 1.0 0.74 0.74 0.74 0.74 0.75
50 3 10 0.13 1.7 0.0 - 0.94 0.55 0.55 0.54 0.55 0.56
100 3 10 0.16 1.7 0.0 - 1.0 0.55 0.54 0.54 0.55 0.55
500 3 10 0.31 2.5 0.3 7 1.0 0.59 0.59 0.59 0.59 0.6

Table 6: Extracting with our method from the same RNNs as in Table 1, but
this time without the initial heuristics as described in Section 7.3. The extrac-
tion time is reduced significantly, along with the accuracy: L∗’s first hypotheses
are frequently very small, and without the aggressive initial state-splitting and
random samples, the abstraction is too coarse to find counterexamples.

The extracted DFAs themselves were also pleasing: each subsequent DFA
proposed by L∗ for this language was capable of accepting all words with
balanced parentheses of increasing nesting depth, as pushed by the counterex-
amples provided by our method (Figure 1). In addition, for the GRU network
trained on BP, our extraction method managed to push past the limits of
the network’s ‘understanding’—finding the point at which the network begins
to overfit to the particularly deeply-nested examples in its training set, and
extracting the slightly more complicated automaton seen in Figure 2.

7.8 Additional variations on our method

We show the necessity of the initial split and counterexamples for our method,
the effect of running extraction for a longer time (if it has not completed), and
support the decision to return the final L∗ hypothesis A as opposed to the
final abstraction AR,p whenever the extraction has not reached equivalence in
time.

Removing the Initial Split Heuristics We run the extraction again on the same
RNNs as in Table 1, but this time setting the initial split depth to 1 and the
number of random samples before accepting a hypothesis to 0. We report the

Extracting Automata from RNNs using Queries and Counterexamples 31

Extraction from LSTM Networks — Our Method (Time Limits)
Time RNN A Accuracy AR,p Accuracy

ds Limit |QA| |QR,p| |p| #c-exs Acc. l=10 l=1000 Train l=10 l=1000 Train

50

50 116 157 1029 5.9 0.74 0.84 0.85 0.85 0.66 0.66 0.66
100 178 163 1031 6.8 0.74 0.86 0.86 0.87 0.66 0.67 0.66
200 300 160 1031 7.5 0.74 0.86 0.86 0.87 0.66 0.67 0.67
500 466 162 1031 8.0 0.74 0.88 0.88 0.88 0.65 0.66 0.66
1000 810 162 1032 9.1 0.74 0.89 0.9 0.9 0.65 0.66 0.66

100

50 113 304 1029 5.0 0.78 0.77 0.77 0.77 0.62 0.62 0.62
100 200 307 1031 6.0 0.78 0.79 0.79 0.79 0.61 0.62 0.62
200 313 305 1029 6.6 0.78 0.8 0.8 0.81 0.61 0.62 0.62
500 532 310 1032 7.4 0.78 0.81 0.81 0.81 0.61 0.62 0.62
1000 728 309 1032 7.6 0.78 0.81 0.82 0.83 0.61 0.62 0.62

Extraction from GRU Networks — Our Method (Time Limits)
Time RNN A Accuracy AR,p Accuracy

ds Limit |QA| |QR,p| |p| #c-exs Acc. l=10 l=1000 Train l=10 l=1000 Train

50

50 132 349 1031 6.3 0.75 0.86 0.86 0.86 0.68 0.69 0.7
100 210 348 1031 6.9 0.75 0.86 0.86 0.86 0.68 0.69 0.69
200 352 348 1030 7.6 0.75 0.87 0.87 0.87 0.68 0.69 0.69
500 540 349 1032 8.8 0.75 0.89 0.89 0.89 0.68 0.7 0.69
1000 830 353 1034 9.7 0.75 0.89 0.89 0.9 0.68 0.7 0.7

100

50 141 508 1031 5.0 0.79 0.76 0.76 0.77 0.61 0.63 0.62
100 174 506 1031 5.6 0.79 0.77 0.78 0.78 0.62 0.63 0.63
200 306 508 1030 6.5 0.79 0.78 0.78 0.79 0.61 0.62 0.63
500 567 522 1035 7.4 0.79 0.81 0.81 0.82 0.62 0.63 0.63
1000 780 517 1033 7.5 0.79 0.81 0.81 0.82 0.61 0.62 0.62

Table 7: Extracting with our method from 2-layer GRUs and LSTMs trained
imperfectly on DFAs with size |Σ| = |Q| = 10, varying RNN hidden size (ds)
and extraction time limit. Each row represents the average of 10 experiments,
with average DFA (|QA|, |QAR,p

|) and final partitioning (|p|) sizes rounded for
space. We report both the accuracy (against the RNN) of the final L∗ hypoth-
esis, A, and the abstraction AR,p used by the method to find counterexamples
to each A. We see that the final L∗ hypothesis is clearly the superior option
when extraction has not terminated. Unfortunately, we also see that the ac-
curacy does not increase well with more time, this is because the hypothesis
generation (time from counterexample to new hypothesis) grows slower with
each iteration.

results in Table 6. The average number of counterexamples (“#c-exs”) per ex-
traction drops to almost 0 for most settings, meaning the majority L∗ initial
hypotheses are accepted immediately by the method (without counterexam-
ples). The number of states in the returned automata is often smaller than in
the target, and their accuracy drops significantly.

This shows that indeed our method must be coupled with some heuristics to
prevent acceptance in the early stages, during which both the abstraction and
the L∗ hypothesis only reflect the RNN’s classification on very short sequences,
and have not yet diverged.

Timing out: Using the Abstraction, and Increasing the Time Limit When we
increase |Σ| and |Q| of our randomly generated target DFAs to 10, the train-
ing routine used in this work is not sufficient for the RNNs with dimensions
ds = 50 and ds = 100 to train perfectly, and they reach on average < 0.8%

32 Gail Weiss et al.

test set accuracy on their target languages. For these RNNs, we observe that
our extraction method does not reach equivalence in the provided time. In
particular, the L∗ hypotheses grow very large, and the extraction often times
out while increasing the observation table: the internal table of sequence labels
maintained by L∗ between equivalence queries (i.e., the majority time is spent
on refining A after each new counterexample).

In all of our experiments, whenever we run out of time, we return the last
L∗ hypothesis A as the extracted automaton. In this section, we check how
much this hypothesis improves as we increase the time limit, and evaluate the
option of returning the last abstraction AR,p used by our method instead.

Table 7 shows a set of extractions from imperfectly trained RNNs, trained
with the same training routine and number of repetitions as before. We make
10 DFAs all with |Q| = |Σ| = 10 and on each DFA train 4 2-layer RNNs: 2
GRUs and 2 LSTMs, each with hidden state sizes ds = 50 and ds = 100. We
then extract from each RNN with 5 different time limits ranging from 50 to
1000 seconds. This means that overall Table 7 shows results for 10 DFAs, 40
RNNs, and 200 extractions (each row represents 10 extractions).28

Alongside the details of the last L∗ hypothesis A, we also report the size
of our final partitioning p (i.e., number of partitions it divides the state space
into), the size (after minimisation) of the abstraction AR,p it defines, and the
accuracy of AR,p against its target RNN.

The results show clearly that the L∗ hypothesis is the preferable choice
when the extraction does not complete. Effectively, the partitioning p and
abstraction AR,p it defines act as a tool for refining the L∗ hypotheses, and
not so much the other way around.29

The results also show that, for these non-terminating extractions, it is ‘dif-
ficult’ to improve beyond the automata reached in the early stages: increasing
the extraction time to 100, 200, and even 1000 seconds gives only a small in-
crease in accuracy each time. We also see that the number of counterexamples
used per extraction grows very slowly with the increase in time, i.e., more time
does not significantly increase the number of hypotheses presented by L∗ .

Analysing the time spent by the extraction reveals that L∗ gets ‘stuck’
refining the large hypotheses it creates, generating many membership queries
without reaching new equivalence queries. The average equivalence query time
across all experiments is <1.5s, whereas the maximum hypothesis refinement
time in each experiment grew to over 10, 48, 60, 170 and 314 seconds for each

28 We ran each extraction in itself, for example each RNN’s 1000 second extraction was
not merely a continuation of its 50 second extraction but a full extraction in its own.
29 This may be because, whenever the equivalence checking finds a disagreement, it first

checks for the possibility of a counterexample to L∗ before checking whether the abstraction
needs to be refined. However, the difference may also come through the more long-sighted
nature of L∗ : internally, L∗ maintains a growing list of prefixes and suffixes, all combinations
of which its hypotheses have to classify correctly. In contrast, traversing a partitioning of the
state space only looks as far as the immediate classification and transitions of each visited
partition. L∗’s advantage here is also its curse: learning a DFA with L∗ has polynomial time
complexity in the size of the DFA, whereas traversing a partitioning is linear in the number
of partitions.

Extracting Automata from RNNs using Queries and Counterexamples 33

of the time limits respectively.30 A more efficient implementation of L∗ , or
possibly an approximation of it, would be an important step towards scaling
this method.

7.9 Discussion

7.9.1 Adversarial Inputs

Balanced Parentheses Excitingly, the penultimate counterexample returned
by our method during the extraction of balanced parentheses (BP) in Section
7.7 is an adversarial input : a sequence with unbalanced parentheses that the
network accepts (despite its target language accepting only sequences with
balanced parentheses). This input is found in spite of the network’s seemingly
perfect behavior on its set of 44000+ training samples. Note that the random
sampler did not manage to find such samples.

Inspecting the extracted automata indeed reveals an almost-but-not-quite
correct DFA for the BP language (Figure 2). The RNN overfit to random
peculiarities in the training data and did not learn the intended language, and
our extraction method managed to discover and highlight an example of this
‘incorrect’ behaviour.

Email Addresses For a seemingly perfect LSTM-acceptor trained on the
regular expression

[a-z][a-z0-9]*@[a-z0-9]+.(com|net|co.[a-z][a-z])$

(simple email addresses over the 38 letter alphabet {a-z,0-9,@,.}) to 100%
accuracy on a 40,000 sample train set and a 2,000 sample test set, our method
quickly returned the counterexamples seen in Table 8, showing clearly words
that the network misclassified (e.g., 25.net). We ran extraction on this net-
work for 400 seconds, and while we could not extract a representative DFA in
this time,31 our method did show that the network learned a far more elaborate
(and incorrect) function than needed. In contrast, given a 400 second overall
time limit, the random sampler did not find any counterexample beyond the
provided one.

We note that our implementation of k-means clustering and extraction
had no success with this network, returning a completely rejecting automaton
(representing the empty language), despite trying k values of up to 100 and
using all of the network states reached using a train set with a 50:50 ratio
between positive and negative samples.

30 I.e., for example, each one of the 1000 second extractions spent at least 314 seconds on
at least one hypothesis refinement.
31 A 134-state DFA A was proposed by L∗ after 178 seconds, and the next refinement to
A (initiated 4.43 seconds later) timed out. The accuracy of the 134-state DFA on the train
set was nearly random. We suspect that the network learned such a complicated behavior
that it simply could not be represented by any small DFA.

34 Gail Weiss et al.

Beyond demonstrating the capabilities of our method, these results also
highlight the brittleness in generalisation of trained RNNs, and suggest that
evidence based on test-set performance should be interpreted with extreme
caution. This reverberates the results of Gorman and Sproat (2016), who
trained a neural architecture based on a multi-layer LSTM to mimic a fi-
nite state transducer (FST) for number normalisation. They showed that the
RNN-based network, trained on 22M samples and validated on a 2.2M sample
development set to 0% error on both, still had occasional errors (though with
error rate < 0.0001) when applied to a 240,000 sample blind test set.

7.9.2 Limitations and Discussion

L∗ Optimisation One limitation of the method shown in this work is the
polynomial time complexity of L∗, which becomes a significant issue as the
extracted DFA grows (see Section 7.8, Timing out). Applying our method
with more efficient variants of L∗ , such as the TTT algorithm presented by
Isberner et al. (2014), may yield better results.

L∗ and Noise Whenever applied to an RNN that has failed to generalise
properly to its target language, our method soon finds several adversarial in-
puts, and begins to build very large DFAs. As noted above, to L∗’s polynomial
complexity and intolerance to noise, this quickly becomes extremely slow.32

Of course by the nature of L∗, any complexity in the final returned automa-
ton is only a result of the inherent complexity of the RNN’s learned behaviour,
and so we may say that this result is not necessarily incorrect. Nevertheless,
it limits us, and seeking a way to recognise and overcome ‘noise’ in the given
network’s behaviour is an interesting avenue for future work.

Adversarial Inputs On the bright side, this same limitation does demon-
strate the ease with which our method identifies imperfectly trained networks.
These cases are annoyingly frequent: for many RNN-acceptors with 100% train
and test accuracy on large test sets, our method was able to find many simple
misclassified examples (Section 7.9.1).

Note on Heuristics In Section 3, we note that existing works consider mul-
tiple RNNs, and then must choose the best according to a heuristic. Our
method can also be seen as considering multiple DFAs and abstractions, with
the equivalence query being the ‘heuristic’ deciding whether to terminate or
consider more DFAs/abstractions. We highlight here our differences. First, in
our method, the DFAs considered are always minimal (thanks to L∗), and the
abstractions used can be much smaller than in other methods. In particular the
abstractions can be small because they are dynamically refined by the method
on an as-needed basis, and so can afford to be very coarse: ‘missed partitions’
are discovered and fixed automatically by the method. Secondly, even when the
refinement eventually creates a very large abstraction, the equivalence query is

32 This happened for example to our balanced-parentheses LSTM network, which timed
out during L∗ refinement after the last counterexample.

Extracting Automata from RNNs using Queries and Counterexamples 35

Counter- Network Target
example Time (s) Classification Classification
0@m.com provided

√ √

@@y.net 2.93 × ×
25.net 1.60

√
×

5x.nem 2.34
√

×
0ch.nom 8.01 × ×
9s.not 3.29 × ×
2hs.net 3.56

√
×

@cp.net 4.43 × ×

Table 8: Counterexamples generated during extraction from an LSTM email-
address network with 100% train and test accuracy. Examples of the network
deviating from its target language are shown in bold.

applied ‘on-the-fly’, meaning it can cut off and return counterexamples/refine
the abstraction even before AR,p has been fully mapped.

8 Learning from Only Positive Samples

Thus far, the method presented here can be used to learn a DFA from a set of
positive and negative samples: we train an RNN-acceptor to generalise from
them, and then extract a DFA from it.

However, we can also use our method to learn a DFA from positive sam-
ples only, by training an RNN using a language-modeling objective, and then
extracting from an RNN-acceptor interpretation of it. Such RNNs are trained
only on positive samples, attempting to model their distribution rather than
classify what is or isn’t in the language:

A language-model RNN (LM-RNN) over an alphabetΣ and end-of-sequence
symbol $ /∈ Σ is an RNN with classification component fR : SR → [0, 1]Σ∪{$}

defining for every RNN-state a distribution over Σ ∪ {$}. An LM-RNN effec-
tively defines for every sequence w ∈ Σ∗ and token σ ∈ Σ∪{$} the probability
of sampling σ after seeing w: P (σ|w) = fR(ĝR(w))(σ).

LM-RNNs can be interpreted as classifiers by taking a threshold t and
defining that they accept exactly the set of sequences w = w1w2...wn ∈ Σ∗
which satisfy: 1. P ($|w) ≥ t, and 2. for every strict prefix w′ = w1w2...wi,
i < n of w, P (wi+1|w′) ≥ t. This interpretation recently appears as locally
ε-truncated support in the work of Hewitt et al. (2020), with ε = t.

LM-RNNs can therefore be adapted for extraction as classifiers by defining
each of their states as accepting or rejecting according to the probability they
assign to $, and introducing an artificial sink-reject state v33 that is entered
whenever a sequence transitions through a token with too low probability.
Formally:

Making an RNN acceptor Let R be an LM-RNN with reachable state space
S (Rds , initial state h0,R ∈ S, update function gR, and classification function

33 I.e., an externally maintained state v /∈ SR.

36 Gail Weiss et al.

fR. Let t ∈ [0, 1] be a threshold and let v ∈ Rds \S be a vector that cannot be
reached in R from any input sequence.34 To create an RNN-acceptor R′ from

R, we build the components h′0,R = h0,R, f ′R(s) =

{
Acc : fR(s)($) ≥ t
Rej : else

, and

g′R(s, σ) =

{
v : fR(s)(σ) < t or s=v

gR(s, σ) : else
.

The new RNN-acceptor R′ can now be passed directly to our algorithm for
extraction.

When the language is ‘small’—in the sense that uniformly sampled se-
quences are likely to be rejected—sampling sequences according to the RNN’s
distribution is likely to hit a sample that has not yet been considered by L∗.
Hence here random sampling according to the RNN’s distribution can be a
useful augmentation to the equivalence query—though this can also create
overly long counterexamples (Section 8.1.3).

This approach—training an LM-RNN, adapting it as a classifier, and then
extracting from it with the method presented in this work—has been recently
applied by Yellin and Weiss (2021) to elicit a sequence of DFAs from trained
LM-RNNs, as part of a process for learning context free grammars from trained
RNNs.

Note Extracting from LM-RNNs requires some hyperparameter tuning, as
changing the threshold t changes the set of sequences accepted by R′.

8.1 Proof of Concept

We provide a small number of example extractions from LM-RNNs trained
on non-regular languages, observing the ability of the method to generate
increasingly ‘complex’ DFA approximations of the targets. More examples are
also present in Yellin and Weiss (2021).

8.1.1 anbn

We train a 2-layer LSTM-based LM-RNN with hidden dimension ds = 50
on positive samples from the language anbn = {aibi | i ∈ N}.35 We then
interpret it as an RNN-acceptor as described above, and extract from it using
our extraction method, with t = 0.1 and a time limit of 400 seconds.

As expected, the extraction generates a series of DFA approximations of
the non-regular target language, we present some of these in Figure 3. The
extraction ultimately reached DFAs approximating anbn up to n ≤ 20 before
timing out, with the majority of time spent on refining the L∗ hypotheses,
which grew slower as the DFA grew: the final hypotheses returned by L∗ took

34 For most RNN architectures, finding such a vector v is easy from the architecture def-
inition. For instance, for LSTMs and GRUs, v = 2̄ is sufficient: both have at least some of
their state dimensions bound to the range [−1, 1].
35 20 epochs on 5000 non-unique samples of average length 50.

Extracting Automata from RNNs using Queries and Counterexamples 37

Fig. 3: Automata approximating the language anbn up to different lengths,
extracted from an RNN trained on only positive examples. The extraction
created ‘correct’ approximations up to n = 20 before reaching the time limit.

46, 54, and 63 seconds each to generate after their ‘prompting’ counterexam-
ples, and the next L∗ refinement after them also timed out after 53 seconds
(meanwhile, each of the counterexamples took < 5 seconds to generate). This
result suggests that this method may benefit from applying a more efficient
implementation of L∗, such as the TTT algorithm of Isberner et al. (2014).

8.1.2 Dyck-3

We consider the language Dyck-3 with 3 additional neutral tokens, i.e.: cor-
rectly balanced sequences over the alphabet {}()[]abc. For example, {}a(b[])c
is in the language, but ([)] and ()) are not.

We use a 2-layer GRU with dimension 50, and train it as a language model
on 50000 non-unique samples of lengths 1-100 from Dyck-3 for 20 epochs,
reaching a train, test, and validation cross-entropy loss of ≈1.7. We interpret
the GRU as a classifier using rejection threshold t = 0.01, and extract from
it using our method with a time limit of 400 seconds and initial split depth
d = 10.36

The abstraction-based equivalence query provides L∗ with counterexamples
teaching it new ‘parantheses nestings’ one at a time,37 creating in 128 seconds

36 We also augmented the equivalence queries with random counterexample generation
using LM-sampling, to be considered before accepting any DFA. However, this was never
used: our abstraction-based method rejected every hypothesis before reaching this stage.
37 The counterexamples are: 1. () 2. {} 3. [} 4. (()) 5. ({}) 6. ([]) 7. {()} 8. {{}} 9. {[]}

10. [{}] 11. ((())) 12. (({})) 13. ({[]}) 14. ([{}]) 15. {([])} 16. {{[]}} 17. {[[]]}
18. [(){}] 19. ([()]) 20. [(())] 21. [[]()] 22. (([])) 23. ([[]]) 24. [([])] 25. [[()]]
26. [[{}]] 27. [[[]]] 28. (((()))) 29. ((([]))) 30. (([{}])) 31. (([[])]] 32. (()[]).
Excluding the third counterexample [}, which teaches L∗ of an incorrectly balanced pair

38 Gail Weiss et al.

Fig. 4: An automaton approximating the language Dyck-3 with neutral to-
kens a-c, obtained in 128 seconds as the 24th hypothesis during extraction
from a GRU trained on only positive samples from the language. The automa-
ton correctly recognises many (but not all) correct parenthesis nestings up to
depth n = 3, for example, it accepts the sequence {([])}() but not the se-
quence ({()}). It rejects the empty sequence, this is an artefact of the RNN’s
behavior.

the Dyck-3 approximation A24 shown in Figure 4 (the 24th hypothesis created
during the extraction). Each of the counterexamples, including those after A24,
takes under 3 seconds to find.

After the counterexample [([])] returned for A24 however, L∗ begins to
find irregularities in the LSTM’s behavior, and jumps from the 26 state DFA
shown in Figure 4 to the 47 state DFA shown in Figure 5. The new hypothesis
shows us how the GRU has overfitted to the training data. For example, one of
the shortest sequences reaching the ‘new’ accepting state 41 is [([a]]), and
indeed checking the GRU shows that it accepts this sequence despite it being
incorrectly balanced. Following the transitions for this sequence, the GRU’s
‘first mistake’ appears to be on the neutral tokens of state 9, which instead of
sitting on a self-loop now go to the different state 22.

Up until A24, the L∗ refinement time (time from counterexample to next
equivalence query) was < 10 seconds per hypothesis. The next refinement, cre-
ating A25, takes 68 seconds however, and from there all remaining refinements
take 15− 35 seconds each.

8.1.3 Sampling the LM-RNN for Equivalence Queries

Long Samples We take the same Dyck-3 RNN as above and again use L∗

to extract from it for 400 seconds, but this time with the equivalence query

that must be rejected, each counterexample describes a new way to nest parentheses pairs in
each other, and is accepted by the RNN. Unfortunately towards the end errors show up, and
we see in the 30th counterexample an incorrectly balanced sequence that the RNN accepts.

Extracting Automata from RNNs using Queries and Counterexamples 39

Fig. 5: The next hypothesis presented by L∗ after receiving the counterexample
[([])] to the DFA shown in 4, while extracting from our LM-GRU trained
on Dyck-3. While the previous hypotheses reflected clear (regular) subsets of
Dyck-3 with bounded depth, now L∗ has found several ‘irregularities’ in the
RNN, and encoded them into a new hypothesis which is much larger and more
complicated than those before it.

40 Gail Weiss et al.

Fig. 6: The last DFA extracted from the LM-GRU trained on Dyck-3 with
neutral tokens a-c, when extracting with L∗ for 400 seconds and only using
LM-sampling with maximum length 10 for the equivalence queries. It is not a
subset of Dyck-3, for example, it accepts the sequence]]]}. This seems to be
an oversight in the extraction: the RNN does not accept this sequence, and an
appropriate counterexample would fix this.

.

based only on comparison of samples generated from the RNN’s distribution.
Specifically, for each equivalence query, we sample sequences up to length
100 indefinitely (as the focus here is finding counterexamples, not reaching
equivalence quickly) with tokens chosen according to the GRU’s next-token
distribution.

Sampling the GRU is effective for creating well balanced nested parenthe-
ses, and the method rejects the initial hypotheses of L∗ (in which the paren-
theses are not yet nested), in under one second. The counterexample has 57
tokens and is:
{c{}{(b[]){()}c}[]()}({{{}c}ccca}cc[]){b}bbb[]abc[]a[c]()
which reaches a maximum nesting depth of 4 and shows multiple parenthe-

ses nesting combinations. Unfortunately, a second equivalence query is never

Extracting Automata from RNNs using Queries and Counterexamples 41

made before reaching the time limit. The length of the counterexample slows
L∗ down (it has polynomial time complexity in, among other things, the length
of its counterexamples), and—possibly more significantly—it is possible that
this counterexample has led L∗ to many ‘incorrect’ behaviours in the RNN,
forcing it to begin working on a large DFA covering all of them at a very early
stage in the extraction.

LM Sampling: Short Samples A second attempt at extraction with RNN-
sampled counterexamples,38 this time with maximum sample length 10, creates
23 DFAs. The last of these is shown in Figure 6.

The equivalence queries are fast (the first ten take <1 second each, and all
take <6 seconds),39 though the extraction does not as clearly resemble Dyck-3:
the DFAs have irregularities relative to those obtained with the abstraction-
based L∗ extraction method. We do not know whether this is due to the
random sampling missing key counterexamples (such as the [} counterexample
in Section 8.1.2) or a reflection of unwanted behaviours in the RNN, but initial
checks of misclassified sequences in the last DFA of this extraction show that
the RNN actually classifies them correctly, suggesting that at least some key
counterexamples could help ‘clean’ these DFAs.

9 Conclusions

We present a novel technique for extracting deterministic finite automata from
recurrent neural networks, with roots in exact learning. As our method makes
no assumptions as to the internal configuration of the network, it is easily
applicable to any RNN architecture, and we evaluate it on the popular LSTM
and GRU models. We show also how to apply it to RNNs trained as language
models rather than acceptors.

In contrast to previous methods, our method is not affected by hidden
state size, and successfully extracts representative DFAs from trained RNNs
of arbitrary size—provided of course that the language learned by these RNNs
can be approximated by DFAs. Our technique works with little to no parameter
tuning, and requires very little prior information to get started (the input
alphabet, and optionally 2 labeled samples).

By the nature of L∗ , which always returns the minimal automaton con-
sistent with all of its observations, our method is guaranteed to never extract
a DFA more complicated than the language of the RNN being considered.
Moreover, the counterexamples returned during our extraction can point us

38 Again with reject threshold t = 0.01 and time limit 400s.
39 The counterexamples are (examples rejected by the RNN are marked with R): 1. R:
ab(){c}[(c 2. {()}[ac[]] 3. [{}] 4. a()b([][]) 5. {a}({})ba 6. c{{}c}b(b) 7. b[({})b()]
8. R: b[[][[]{}] 9. a([a[]]()) 10. {()[][]}a 11. [acaa{()}] 12. b[{{()}}]a 13. ((()))c{}
14. R: (c)ca[{[]} 15. {[[]]}[]ca 16. (({})) 17. ([()]) 18. (({}b[])c) 19. ({}(){()})
20. []{bb({})} 21. [(())c]a 22. cbb[[()c]] 23. a[(a[])]ab. The last counterexample is
given only 5 seconds before the time limit, and so the 24th equivalence query is not reached.

42 Gail Weiss et al.

to ‘incorrect’ (with respect to the target language) patterns that the network
has learned without our awareness.

Beyond scalability and ease of use, our method obtains reasonable approx-
imations for RNNs even if extraction is cut short: for the poorly trained RNNs
(RNNs with <80% accuracy on their own test sets) considered in Table 7, our
method obtains ≥77% train set accuracy in each of the extractions. Moreover,
for networks that accurately represent small automata, we have shown that
our method gets very good results: in these cases our method often obtains
small, succinct DFAs, with accuracies of over 99% against their networks, in
seconds or tens of seconds of extraction (Table 1). This is in contrast to exist-
ing methods, which require orders of magnitude more time to complete, and
often return cumbersome or inaccurate DFAs (Tables 2 and 3).

Acknowledgements The authors thank Rémi Eyraud, Xiaokun Luan, and the anonymous
reviewers for their constructive comments. The research leading to the results presented
in this paper is supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 802774
(iEXTRACT).

Declarations

· Funding: This project received funding from the European Research Council (ERC),
under grant agreement No. 802774 (iEXTRACT).
· Conflicts of interest: None
· Consent to participate: Not Applicable
· Consent for publication: Not Applicable
· Availability of data and material: All experiments were on synthetic data (generated

by code below:)
· Code availability: Code for this paper is available at:

https://github.com/tech-srl/lstar extraction

· Authors’ contributions: All authors worked on the algorithm design and the paper
manuscript. Gail did all the implementations and experiments, under the supervision of
Yoav and Eran.

References

Adi Y, Kermany E, Belinkov Y, Lavi O, Goldberg Y (2016) Fine-grained
analysis of sentence embeddings using auxiliary prediction tasks. CoRR
abs/1608.04207, URL http://arxiv.org/abs/1608.04207, 1608.04207

Angluin D (1987) Learning regular sets from queries and counterexam-
ples. Inf Comput 75(2):87–106, DOI 10.1016/0890-5401(87)90052-6, URL
https://doi.org/10.1016/0890-5401(87)90052-6

Arras L, Montavon G, Müller K, Samek W (2017) Explaining recurrent neu-
ral network predictions in sentiment analysis. CoRR abs/1706.07206, URL
http://arxiv.org/abs/1706.07206, 1706.07206

Extracting Automata from RNNs using Queries and Counterexamples 43

Ayache S, Eyraud R, Goudian N (2018) Explaining black boxes on se-
quential data using weighted automata. In: Unold O, Dyrka W, Wiec-
zorek W (eds) Proceedings of the 14th International Conference on Gram-
matical Inference, ICGI 2018, Wroc law, Poland, September 5-7, 2018,
PMLR, Proceedings of Machine Learning Research, vol 93, pp 81–103, URL
http://proceedings.mlr.press/v93/ayache19a.html

Balle B, Carreras X, Luque FM, Quattoni A (2014) Spectral learn-
ing of weighted automata - A forward-backward perspective.
Mach Learn 96(1-2):33–63, DOI 10.1007/s10994-013-5416-x, URL
https://doi.org/10.1007/s10994-013-5416-x

Barbot B, Bollig B, Finkel A, Haddad S, Khmelnitsky I, Leucker M, Nei-
der D, Roy R, Ye L (2021) Extracting context-free grammars from re-
current neural networks using tree-automata learning and a* search. In:
Chandlee J, Eyraud R, Heinz J, Jardine A, van Zaanen M (eds) Proceed-
ings of the Fifteenth International Conference on Grammatical Inference,
PMLR, Proceedings of Machine Learning Research, vol 153, pp 113–129,
URL https://proceedings.mlr.press/v153/barbot21a.html

Berg T, Jonsson B, Leucker M, Saksena M (2005) In-
sights to angluin’s learning. Electr Notes Theor Com-
put Sci 118:3–18, DOI 10.1016/j.entcs.2004.12.015, URL
https://doi.org/10.1016/j.entcs.2004.12.015

Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for op-
timal margin classifiers. In: Proceedings of the Fifth Annual Work-
shop on Computational Learning Theory, ACM, New York, NY,
USA, COLT ’92, pp 144–152, DOI 10.1145/130385.130401, URL
http://doi.acm.org/10.1145/130385.130401

Casey M (1998) Correction to proof that recurrent neural networks
can robustly recognize only regular languages. Neural Compu-
tation 10(5):1067–1069, DOI 10.1162/089976698300017340, URL
https://doi.org/10.1162/089976698300017340

Cechin AL, Simon DRP, Stertz K (2003) State automata extraction from re-
current neural nets using k-means and fuzzy clustering. In: Proceedings of
the XXIII International Conference of the Chilean Computer Science Soci-
ety, IEEE Computer Society, Washington, DC, USA, SCCC ’03, pp 73–78,
URL http://dl.acm.org/citation.cfm?id=950790.951318

Cho K, van Merrienboer B, Bahdanau D, Bengio Y (2014) On the prop-
erties of neural machine translation: Encoder-decoder approaches. CoRR
abs/1409.1259, URL http://arxiv.org/abs/1409.1259, 1409.1259

Chung J, Gülçehre Ç, Cho K, Bengio Y (2014) Empirical evaluation of gated
recurrent neural networks on sequence modeling. CoRR abs/1412.3555, URL
http://arxiv.org/abs/1412.3555, 1412.3555

Clark A (2010) Distributional learning of some context-free languages with
a minimally adequate teacher. In: Sempere JM, Garćıa P (eds) Gram-
matical Inference: Theoretical Results and Applications, 10th International
Colloquium, ICGI 2010, Valencia, Spain, September 13-16, 2010. Proceed-
ings, Springer, Lecture Notes in Computer Science, vol 6339, pp 24–37,

44 Gail Weiss et al.

DOI 10.1007/978-3-642-15488-1 4, URL https://doi.org/10.1007/978-3-642-
15488-1 4

Clark A, Eyraud R (2007) Polynomial identification in the limit of sub-
stitutable context-free languages. J Mach Learn Res 8:1725–1745, URL
http://dl.acm.org/citation.cfm?id=1314556

Clark A, Yoshinaka R (2016) Distributional Learning of Context-Free and
Multiple Context-Free Grammars, Springer Berlin Heidelberg, pp 143–172.
DOI 10.1007/978-3-662-48395-4 6

Cleeremans A, Servan-Schreiber D, McClelland JL (1989) Finite state au-
tomata and simple recurrent networks. Neural Comput 1(3):372–381, DOI
10.1162/neco.1989.1.3.372, URL https://doi.org/10.1162/neco.1989.1.3.372

Cohen M, Caciularu A, Rejwan I, Berant J (2017) Inducing Regular Grammars
Using Recurrent Neural Networks. ArXiv e-prints 1710.10453

Dulizia A, Ferri F, Grifoni P (2010) A survey of grammatical inference methods
for natural language learning. Artificial Intelligence Review 36:1–27

Elman JL (1990) Finding structure in time. Cognitive Science 14(2):179–211
Gers F, Schmidhuber E (2001) Lstm recurrent networks learn simple context-

free and context-sensitive languages. IEEE Transactions on Neural Networks
12(6):1333–1340, DOI 10.1109/72.963769

Giles CL, Sun GZ, Chen HH, Lee YC, Chen D (1990) Higher order recurrent
networks and grammatical inference. In: Touretzky DS (ed) Advances in
Neural Information Processing Systems 2, Morgan-Kaufmann, pp 380–387

Goldberg Y (2016) A primer on neural network models for natural lan-
guage processing. J Artif Intell Res 57:345–420, DOI 10.1613/jair.4992, URL
https://doi.org/10.1613/jair.4992

Goldberg Y (2017) Neural Network Methods for Natural Language Pro-
cessing. Synthesis Lectures on Human Language Technologies, Morgan &
Claypool Publishers, DOI 10.2200/S00762ED1V01Y201703HLT037, URL
https://doi.org/10.2200/S00762ED1V01Y201703HLT037

Goldman SA, Kearns MJ (1995) On the complexity of teaching.
J Comput Syst Sci 50(1):20–31, DOI 10.1006/jcss.1995.1003, URL
https://doi.org/10.1006/jcss.1995.1003

Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. The MIT Press
Gorman K, Sproat R (2016) Minimally supervised number normalization.

Transactions of the Association for Computational Linguistics 4:507–519,
URL https://www.transacl.org/ojs/index.php/tacl/article/view/897

Goudreau MW, Giles CL, Chakradhar ST, Chen D (1994) First-
order versus second-order single-layer recurrent neural networks. IEEE
Trans Neural Networks 5(3):511–513, DOI 10.1109/72.286928, URL
https://doi.org/10.1109/72.286928

Hewitt J, Hahn M, Ganguli S, Liang P, Manning CD (2020) RNNs
can generate bounded hierarchical languages with optimal memory. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Association for Computational Linguis-
tics, Online, pp 1978–2010, DOI 10.18653/v1/2020.emnlp-main.156, URL
https://www.aclweb.org/anthology/2020.emnlp-main.156

Extracting Automata from RNNs using Queries and Counterexamples 45

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neu-
ral Computation 9(8):1735–1780, DOI 10.1162/neco.1997.9.8.1735,
URL https://doi.org/10.1162/neco.1997.9.8.1735,
https://doi.org/10.1162/neco.1997.9.8.1735

Isberner M, Howar F, Steffen B (2014) The TTT algorithm: A redundancy-
free approach to active automata learning. In: Bonakdarpour B, Smolka
SA (eds) Runtime Verification - 5th International Conference, RV 2014,
Toronto, ON, Canada, September 22-25, 2014. Proceedings, Springer, Lec-
ture Notes in Computer Science, vol 8734, pp 307–322, DOI 10.1007/978-3-
319-11164-3 26, URL https://doi.org/10.1007/978-3-319-11164-3 26

Jacobsson H (2005) Rule extraction from recurrent neu-
ral networks: A taxonomy and review. Neural Com-
put 17(6):1223–1263, DOI 10.1162/0899766053630350, URL
http://dx.doi.org/10.1162/0899766053630350

Kádár Á, Chrupala G, Alishahi A (2016) Representation of linguistic form
and function in recurrent neural networks. CoRR abs/1602.08952, URL
http://arxiv.org/abs/1602.08952, 1602.08952

Karpathy A, Johnson J, Li F (2015) Visualizing and understanding recurrent
networks. CoRR abs/1506.02078, URL http://arxiv.org/abs/1506.02078,
1506.02078

Lei T, Barzilay R, Jaakkola TS (2016) Rationalizing neural predictions. CoRR
abs/1606.04155, URL http://arxiv.org/abs/1606.04155, 1606.04155

Li J, Chen X, Hovy EH, Jurafsky D (2015) Visualizing and un-
derstanding neural models in NLP. CoRR abs/1506.01066, URL
http://arxiv.org/abs/1506.01066, 1506.01066

Linzen T, Dupoux E, Goldberg Y (2016) Assessing the ability of
LSTMs to learn syntax-sensitive dependencies. Transactions of
the Association for Computational Linguistics 4:521–535, URL
https://transacl.org/ojs/index.php/tacl/article/view/972

Mayr F, Yovine S (2018) Regular Inference on Artificial Neural Networks. In:
Holzinger A, Kieseberg P, Tjoa AM, Weippl E (eds) 2nd International Cross-
Domain Conference for Machine Learning and Knowledge Extraction (CD-
MAKE), Springer International Publishing, Hamburg, Germany, Machine
Learning and Knowledge Extraction, vol LNCS-11015, pp 350–369, DOI
10.1007/978-3-319-99740-7 25, URL https://hal.inria.fr/hal-02060043, part
5: MAKE Explainable AI

Murdoch WJ, Szlam A (2017) Automatic rule extraction from
long short term memory networks. CoRR abs/1702.02540, URL
http://arxiv.org/abs/1702.02540, 1702.02540

Okudono T, Waga M, Sekiyama T, Hasuo I (2020) Weighted automata ex-
traction from recurrent neural networks via regression on state spaces.
In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, AAAI Press, pp 5306–5314, URL

46 Gail Weiss et al.

https://aaai.org/ojs/index.php/AAAI/article/view/5977
Omlin CW, Giles CL (1996) Extraction of rules from discrete-time recur-

rent neural networks. Neural Networks 9(1):41–52, DOI 10.1016/0893-
6080(95)00086-0, URL https://doi.org/10.1016/0893-6080(95)00086-0

Omlin CW, Giles CL (2000) Symbolic knowledge representation in re-
current neural networks: Insights from theoretical models of com-
putation. In: Cloete I, Zurada JM (eds) Knowledge-based Neuro-
computing, MIT Press, Cambridge, MA, USA, pp 63–116, URL
http://dl.acm.org/citation.cfm?id=337224.337236

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison
M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019)
Pytorch: An imperative style, high-performance deep learning library. In:
Wallach H, Larochelle H, Beygelzimer A, d’Alché Buc F, Fox E, Garnett
R (eds) Advances in Neural Information Processing Systems 32, Curran
Associates, Inc., pp 8024–8035, URL http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blon-
del M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cour-
napeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12:2825–2830

Sakakibara Y (1992) Efficient learning of context-free grammars
from positive structural examples. Information and Computation
97(1):23–60, DOI https://doi.org/10.1016/0890-5401(92)90003-X, URL
https://www.sciencedirect.com/science/article/pii/089054019290003X

Shi X, Padhi I, Knight K (2016) Does string-based neural mt learn source
syntax? In: EMNLP, pp 1526–1534

Shibata C, Yoshinaka R (2016) Probabilistic learnability of
context-free grammars with basic distributional proper-
ties from positive examples. Theoretical Computer Science
620:46–72, DOI https://doi.org/10.1016/j.tcs.2015.10.037, URL
https://www.sciencedirect.com/science/article/pii/S0304397515009433,
algorithmic Learning Theory

Strobelt H, Gehrmann S, Huber B, Pfister H, Rush AM (2016) Visual
analysis of hidden state dynamics in recurrent neural networks. CoRR
abs/1606.07461, URL http://arxiv.org/abs/1606.07461, 1606.07461

Suzgun M, Gehrmann S, Belinkov Y, Shieber SM (2019) LSTM net-
works can perform dynamic counting. CoRR abs/1906.03648, URL
http://arxiv.org/abs/1906.03648, 1906.03648

Tellier I (2006) Learning recursive automata from positive examples.
Rev d’Intelligence Artif 20(6):775–804, DOI 10.3166/ria.20.775-804, URL
https://doi.org/10.3166/ria.20.775-804

Tomita M (1982) Dynamic construction of finite automata from examples
using hill-climbing. In: Proceedings of the Fourth Annual Conference of the
Cognitive Science Society, Ann Arbor, Michigan, pp 105–108

Extracting Automata from RNNs using Queries and Counterexamples 47

Wang C, Niepert M (2019) State-regularized recurrent neural net-
works. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the
36th International Conference on Machine Learning, PMLR, Proceed-
ings of Machine Learning Research, vol 97, pp 6596–6606, URL
http://proceedings.mlr.press/v97/wang19j.html

Wang Q, Zhang K, Ororbia II AG, Xing X, Liu X, Giles CL (2017) An
empirical evaluation of recurrent neural network rule extraction. CoRR
abs/1709.10380, URL http://arxiv.org/abs/1709.10380, 1709.10380

Wang Q, Zhang K, Ororbia II AG, Xing X, Liu X, Giles CL (2018)
A comparison of rule extraction for different recurrent neural net-
work models and grammatical complexity. CoRR abs/1801.05420, URL
http://arxiv.org/abs/1801.05420, 1801.05420

Weiss G, Goldberg Y, Yahav E (2018a) Extracting automata from recurrent
neural networks using queries and counterexamples. In: Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, pp 5244–5253, URL
http://proceedings.mlr.press/v80/weiss18a.html

Weiss G, Goldberg Y, Yahav E (2018b) On the practical computational
power of finite precision RNNs for language recognition. In: Proceedings
of the 56th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), Association for Computational Linguis-
tics, Melbourne, Australia, pp 740–745, DOI 10.18653/v1/P18-2117, URL
https://www.aclweb.org/anthology/P18-2117

Weiss G, Goldberg Y, Yahav E (2019) Learning deterministic weighted au-
tomata with queries and counterexamples. In: Wallach H, Larochelle H,
Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R (eds) Advances in Neural
Information Processing Systems, Curran Associates, Inc., vol 32

Yellin DM, Weiss G (2021) Synthesizing context-free grammars from recurrent
neural networks. In: Groote JF, Larsen KG (eds) Tools and Algorithms for
the Construction and Analysis of Systems, Springer International Publish-
ing, Cham, pp 351–369

Yokomori T (2003) Polynomial-time identification of very simple grammars
from positive data. Theor Comput Sci 298(1):179–206, DOI 10.1016/S0304-
3975(02)00423-1, URL https://doi.org/10.1016/S0304-3975(02)00423-1

Yoshinaka R (2019) Distributional learning of conjunctive grammars and con-
textual binary feature grammars. J Comput Syst Sci 104:359–374, DOI
10.1016/j.jcss.2017.07.004, URL https://doi.org/10.1016/j.jcss.2017.07.004

Zeng Z, Goodman RM, Smyth P (1993) Learning finite
state machines with self-clustering recurrent networks. Neu-
ral Computation 5(6):976–990, DOI 10.1162/neco.1993.5.6.976,
URL https://doi.org/10.1162/neco.1993.5.6.976,
https://doi.org/10.1162/neco.1993.5.6.976

Zhang X, Du X, Xie X, Ma L, Liu Y, Sun M (2021) Decision-guided weighted
automata extraction from recurrent neural networks. In: Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Confer-
ence on Innovative Applications of Artificial Intelligence, IAAI 2021, The

48 Gail Weiss et al.

Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, AAAI Press, pp 11699–
11707, URL https://ojs.aaai.org/index.php/AAAI/article/view/17391

