of Technology

Neural Sequence Models: A Formal Lens

Gail Weiss
Yoav Goldberg, Eran Yahav

Neural Sequence Models

Understanding the Black Box

- Reliability (Verifiability)
- Intuition (biases, model selection)
- Knowledge extraction

- Model design

Neural Sequence Models

Understanding the Black Box

- Reliability (Verifiability)
- Intuition (biases, model selection)
- Knowledge extraction

- Model design
- Just kinda cool

Neural Sequence Models

- Model design
- Just kinda cool

Natural language is hard...

Neural Sequence Models: A Formal Lens

Understanding the Black Box

- Reliability (Verifiability)
- Intuition (biases, model selection)
- Knowledge extraction

- Model design
- Just kinda cool

Neural Sequence Models: a Formal Lens

Counting

LSTMs are counter machines, GRUs aren't (ACL 2018)

RASP

Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs

Applying L* to learn DFAs from RNNs (ICML 2018)

+ using the result for CFGs (tacas 2021)

Neural Sequence Models: a Formal Lens

Counting

LSTMs are counter machines, GRUs aren't (ACL 2018)

RASP
 Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs
Applying L* to learn DFAs from RNNs (ICML 2018)

+ using the result for CFGs (tacas 2021)

RNNs

(Elman, 1990)
Introduction of RNNs

General RNN concept: $\quad h_{t}=f\left(x_{t}, h_{t-1}\right)$

$$
\text { Elman RNN: } \quad h_{t}=\sigma_{h}\left(W_{h} x_{t}+U_{h} h_{t-1}+b_{h}\right)
$$

RNNs

(Elman, 1990)
Introduction of RNNs

General RNN concept: $\quad h_{t}=f\left(x_{t}, h_{t-1}\right)$

$$
\text { Elman RNN: } \quad h_{t}=\sigma_{h}\left(W_{h} x_{t}+U_{h} h_{t-1}+b_{h}\right)
$$

RNNs

(Elman, 1990)
Introduction of RNNs
(Siegelmann and Sonntag, 1993)
RNNs are Turing Complete
Theoretical Power

RNNs

(Elman, 1990)
Introduction of RNNs
(Siegelmann and Sonntag, 1993)
Theoretical Power
RNNs are Turing Complete
(Hochreiter and Schmidhuber, 1997) LSTMs

RNNs

(Elman, 1990)
Introduction of RNNs
(Siegelmann and Sonntag, 1993)
RNNs are Turing Complete
(Hochreiter and Schmidhuber, 1997) LSTMs
(Cho et al, 2014) GRUs

RNNs

(Elman, 1990)
Introduction of RNNs
(Siegelmann and Sonntag, 1993)
Theoretical Power
RNNs are Turing Complete

RNN Turing Completeness Proof (1993):

1. Requires Infinite Precision:

Uses stack(s), with zeros pushed using division: $g=g / 4+1 / 4$
In 32 bits, this reaches the limit after 15 pushes
2. Requires Infinite Time:

And specifically, allows processing beyond reading input (Non standard use case!)

RNNs

(Elman, 1990)
Introduction of RNNs
(Siegelmann and Sonntag, 1993)
Theoretical Power
RNNs are Turing Complete
(Hochreiter and Schmidhuber, 1997) LSTMs
(Cho et al, 2014)
GRUs

$$
h_{t}=f\left(x_{t}, h_{t-1}\right)
$$

Practical RNNs

GRU

LSTM

$$
\begin{aligned}
z_{t} & =\sigma\left(W^{z} x_{t}+U^{z} h_{t-1}+b^{z}\right) \\
r_{t} & =\sigma\left(W^{r} x_{t}+U^{r} h_{t-1}+b^{r}\right) \\
\tilde{h}_{t} & =\tanh \left(W^{h} x_{t}+U^{h}\left(r_{t} \circ h_{t-1}\right)+b^{h}\right) \\
h_{t} & =z_{t} \circ h_{t-1}+\left(1-z_{t}\right) \circ \tilde{h}_{t}
\end{aligned}
$$

$$
\begin{aligned}
f_{t} & =\sigma\left(W^{f} x_{t}+U^{f} h_{t-1}+b^{f}\right) \\
i_{t} & =\sigma\left(W^{i} x_{t}+U^{i} h_{t-1}+b^{i}\right) \\
o_{t} & =\sigma\left(W^{o} x_{t}+U^{o} h_{t-1}+b^{o}\right) \\
\tilde{c}_{t} & =\tanh \left(W^{c} x_{t}+U^{c} h_{t-1}+b^{c}\right) \\
c_{t} & =f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t} \\
h_{t} & =o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

Practical RNNs

GRU

LSTM

$$
\begin{aligned}
& z_{t}=\sigma\left(W^{z} x_{t}+U^{z} h_{t-1}+b^{z}\right) _ \text {gates } \rightarrow f_{t}=\sigma\left(W^{f} x_{t}+U^{f} h_{t-1}+b^{f}\right) \\
& r_{t}=\sigma\left(W^{r} x_{t}+U^{r} h_{t-1}+b^{r}\right) \\
& i_{t}=\sigma\left(W^{i} x_{t}+U^{i} h_{t-1}+b^{i}\right) \\
& \tilde{h}_{t}=\tanh \left(W^{h} x_{t}+U^{h}\left(r_{t} \circ h_{t-1}\right)+b^{h}\right) \\
& o_{t}=\sigma\left(W^{o} x_{t}+U^{o} h_{t-1}+b^{o}\right) \\
& h_{t}=z_{t} \circ h_{t-1}+\left(1-z_{t}\right) \circ \tilde{h}_{t} \\
& \tilde{c}_{t}=\tanh \left(W^{c} x_{t}+U^{c} h_{t-1}+b^{c}\right) \\
& \text { candidate } \\
& c_{t}=f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t} \\
& \text { vectors } h_{t}=o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

Practical RNNs

GRU

LSTM

$$
\begin{aligned}
& \begin{array}{l}
z_{t} \in(0,1) \\
r_{t} \in(0,1) \\
\tilde{h}_{t}=\tanh \left(W^{h} x_{t}+U^{h}\left(r_{t} \circ h_{t-1}\right)+b^{h}\right) \\
h_{t}=z_{t} \circ h_{t-1}+\left(1-z_{t}\right) \circ \tilde{h}_{t} \\
\end{array} \quad \leftarrow \text { gates }
\end{aligned} \rightarrow \begin{aligned}
& f_{t} \in(0,1) \\
& i_{t} \in(0,1) \\
& o_{t} \in(0,1)
\end{aligned}
$$

Practical RNNs

GRU

LSTM

$$
\begin{aligned}
& \begin{array}{l}
z_{t} \in(0,1) \\
r_{t} \in(0,1) \\
\tilde{h}_{t} \in(-1,1) \\
h_{t}=z_{t} \circ h_{t-1}+\left(1-z_{t}\right) \circ \tilde{h}_{t}
\end{array} \quad \sim \text { gates }
\end{aligned} \quad \begin{aligned}
& f_{t} \in(0,1) \\
& i_{t} \in(0,1) \\
& o_{t} \in(0,1)
\end{aligned}
$$

Practical RNNs

GRU

LSTM

$z_{t} \in(0,1)$
$r_{t} \in(0,1$
$\tilde{h}_{t} \in(-$ Bounded!
$h_{t}=z_{t} \circ h_{t-1}+\left(1-z_{t}\right) \circ \tilde{h}_{t}$

Practical RNNs

GRU

$$
\begin{aligned}
& z_{t} \in(0,1) \\
& r_{t} \in(0,1) \\
& \tilde{h}_{t} \in(-1,1) \\
& h_{t}=z_{t} \circ h_{t-1}+\left(1-z_{t}\right) \circ \tilde{h}_{t}
\end{aligned}
$$

LSTM

$$
\begin{aligned}
f_{t} & \in(0,1) \quad \text { reset/keep, then - } \\
i_{t} & \in(0,1) \quad \text { stay/step, by - } \\
o_{t} & \in(0,1) \quad \text { subtract/add } \\
\tilde{c}_{t} & \in(-1,1) \quad \\
c_{t} & =f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t} \\
h_{t} & =o_{t} \circ g\left(c_{t}\right)
\end{aligned}
$$

Practical RNNs

GRU

$$
\begin{aligned}
& z_{t} \in(0,1) \\
& r_{t} \in(0,1) \\
& \tilde{h}_{t} \in(-1,1) \\
& h_{t}=z_{t} \circ h_{t-1}+\left(1-z_{t}\right) \circ \tilde{h}_{t}
\end{aligned}
$$

LSTM

$$
\begin{aligned}
f_{t} & \in(0,1) \quad \text { reset/keep, then - } \\
i_{t} & \in(0,1) \quad \text { stay/step, by - } \\
o_{t} & \in(0,1) \\
\tilde{c}_{t} & \in(-1,1) \quad \text { subtract/add } \\
c_{t} & =f_{t} \circ c_{t-1}+i_{t} \circ \tilde{c}_{t} \\
h_{t} & =o_{t} \circ g\left(c_{t}\right) \quad
\end{aligned}
$$

Counting

Practical RNNs

GRU

LSTM

Activations on $a^{1000} b^{1000}$
Trained $a^{n} b^{n}$, (on positive examples up to length 100)
GRU begins failing at length 39

Practical RNNs

GRU

LSTM

Activations on $a^{100} b^{100} c^{100}$
Trained $a^{n} b^{n} c^{n}, \quad$ (on positive examples up to length 100)
GRU begins failing at length 9

Neural Sequence Models: a Formal Lens

Counting

LSTMs are counter machines, GRUs aren't (ACL 2018)

RASP
 Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs
Applying L* to learn DFAs from RNNs (ICML 2018)

+ using the result for CFGs (tacas 2021)

Neural Sequence Models: a Formal Lens

Counting
 LSTMs are counter machines, GRUs aren't (AcL 2018)

RASP

Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs
Applying L* to learn DFAs from RNNs (ICML 2018)

+ using the result for CFGs (tacas 2021)

RASP

RASP

Transformers

Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin

Transformers

Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin

Encoder

Transformers

Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin

Encoder

Transformers

- Receive their entire input 'at once', processing all tokens in parallel

Transformers

- Receive their entire input 'at once', processing all tokens in parallel
- Have a fixed number of layers, such that the output of one is the input of the next

Transformers

- Receive their entire input 'at once', processing all tokens in parallel
- Have a fixed number of layers, such that the output of one is the input of the next

Computation "progresses" along network depth... not input length

Transformers

$$
\begin{gathered}
\text { tokens }=\text { positionwise_embeddings(input) } \\
\text { indices }=\text { positionwise_indices(input) } \\
x=\text { tokens+indices } \\
y^{1}=L_{1}(x) \\
y^{2}=L_{2}\left(y^{1}\right) \\
\cdots \\
y=y^{L}=L_{L}\left(y^{L-1}\right)
\end{gathered}
$$

Layer input/outputs are "variables" of a transformer "program"

RASP (Restricted Access Sequence Processing)

RASP (Restricted Access Sequence Processing)

- A transformer-encoder is a sequence to sequence function ("sequence operator", or, "s-op")
- Its layers apply operations to the sequences
- RASP builds s-ops, constrained to a transformer's inputs and possible operations
- (The s-ops are the transformer abstractions!)

RASP base s-ops

tokens and indices are RASP built-ins:
>> tokens;
s-op: tokens
>> indices;
s-op: indices

RASP base s-ops

tokens and indices are RASP built-ins:

```
>> tokens;
    s-op: tokens
        Example: tokens("hello") = [h, e, l, l, o] (strings)
>> indices;
    s-op: indices
            Example: indices("hello") = [0, 1, 2, 3, 4] (ints)
```

The RASP REPL gives you
examples (until you ask it not to)

Okay, now what?

```
>> tokens;
        s-op: tokens
            Example: tokens("hello") = [h, e, l, l, o] (strings)
>> indices;
        s-op: indices
            Example: indices("hello") = [0, 1, 2, 3, 4] (ints)
```

To know what operations RASP may have, we must inspect the transformer-encoder layers!

Transformer-Encoder Layer

Feed-Forward Sublayer

Feed-Forward Sublayer

Multilayer Feedforward Networks are Universal Approximators

Kurt Hornik
Technische Universität Wien
Maxwell Stinchcombe and Halbert White
University of California. San Diego
(Received 16 September 1988: revised and accepted 9 March 1989)
Abstract-This paper rigorously establishes that standard multilayer feedforward networks with as few as one hidden layer using arbitrary squashing functions are capable of approximating any Borel measurable function from one finite dimensional space to another to any desired degree of accuracy, provided sufficiently many hidden units are available. In this sense, multilayer feedforward networks are a class of universal approximators.

```
>> indices+1;
    s-op: out
        Example: out("hello") = [1, 2, 3, 4, 5] (ints)
>> tokens=="e" or tokens=="o";
s-op: out
    Example: out("hello") = [F, T, F, F, T] (bools)
```


So far

```
>> tokens;
        s-op: tokens
        Example: tokens("hello") = [h, e, l, l, o] (strings)
>> indices;
        s-op: indices
            Example: indices("hello") = [0, 1, 2, 3, 4] (ints)
>> indices+1;
        s-op: out
            Example: out("hello") = [1, 2, 3, 4, 5] (ints)
>> tokens=="e" or tokens=="o";
        s-op: out
            Example: out("hello") = [F, T, F, F, T] (bools)
```


Are we all-powerful

(well, transformer-powerful) yet?

Attention Sublayer

Background - Multi Head Attention

Starting from single-head attention...

Background - Self Attention (Single Head)

input

Background - Self Attention (Single Head)

Background - Self Attention (Single Head)

Background - Self Attention (Single Head)

scores

Background - Self Attention (Single Head)

scores

Background - Self Attention (Single Head)

scores

Background - Self Attention (Single Head)

scores

Background - Self Attention (Single Head)

scores

Background - Self Attention (Single Head)

scores

Background - Self Attention (Single Head)

Background - Self Attention (Single Head)

Background - Self Attention (Single Head)

Attention Head
scores
input

So, how do we present an attention head?

Self Attention (Single Head)

Attention Head
scores

Self Attention (Single Head)

Self Attention (Single Head)

Single Head: Scoring \leftrightarrow Selecting

Single Head: Scoring \leftrightarrow Selecting

Decision: RASP abstracts to binary select/don't select decisions

> sell = select([2,0,0],[0,1,2],==)

Single Head: Scoring \leftrightarrow Selecting

Decision: RASP abstracts to binary select/don't select decisions

Single Head: Scoring \leftrightarrow Selecting

Decision: RASP abstracts to binary select/don't select decisions

$$
\text { sell }=\operatorname{select}([2,0,0],[0,1,2],==)
$$

Single Head: Scoring \leftrightarrow Selecting

Decision: RASP abstracts to binary select/don't select decisions
sel $=\operatorname{select}([2,0,0],[0,1,2],==)$

Single Head: Scoring \leftrightarrow Selecting

Decision: RASP abstracts to binary select/don't select decisions
sell $=\operatorname{select}([2,0,0],[0,1,2],==)$

Single Head: Scoring \leftrightarrow Selecting

Decision: RASP abstracts to binary select/don't select decisions

> sel = select([2,0,0],[0,1,2],==)

Single Head: Scoring \leftrightarrow Selecting

Decision: RASP abstracts to binary select/don't select decisions

> sel = select([2,0,0],[0,1,2],==)

Single Head: Scoring \leftrightarrow Selecting

Decision: RASP abstracts to binary select/don't select decisions
sell $=\operatorname{select}([2,0,0],[0,1,2],==)$

Another example:

Single Head: Scoring \leftrightarrow Selecting

prevs $=\boldsymbol{\operatorname { s e l }} \mathbf{e c t}([0,1,2],[0,1,2],<=)$

```
    01 0
O T F F
1 T T F
2 T T T
```


Single Head: Scoring \leftrightarrow Selecting

prevs $=\boldsymbol{\operatorname { s e l }}$ ect([0,1,2],[0,1,2],<=)

$$
\begin{aligned}
& (1,0,0, \ldots) k_{1} \\
& (0,1,0, \ldots) k_{2} \\
& (0,0,1, \ldots) k_{3}
\end{aligned}
$$

012

```
OT F F
1 T T F
2 T T T
```


Single Head: Scoring \leftrightarrow Selecting

prevs $=\boldsymbol{\operatorname { s e l }} \mathbf{e c t}([0,1,2],[0,1,2],<=)$
$(1,0,0, \ldots) k_{1}$
$(0,1,0, \ldots) k_{2}$
$(0,0,1, \ldots) k_{3}$
$(1,0,0, \ldots) q_{1}$
$(1,1,0, \ldots) q_{2}$
$(1,1,1, \ldots) q_{3}$

Single Head: Weighted Average \leftrightarrow Aggregation

Single Head: Weighted Average \leftrightarrow Aggregation

Single Head: Weighted Average \leftrightarrow Aggregation

$$
\text { new=aggregate(sel, }[1,2,4] \text {) }
$$

Single Head: Weighted Average \leftrightarrow Aggregation

$$
\text { new=aggregate(sel, }[1,2,4])
$$

Single Head: Weighted Average \leftrightarrow Aggregation

$$
\text { new=aggregate(sel, }[1,2,4])
$$

$$
\begin{aligned}
& \\
& \\
& \\
& F \\
& \hline
\end{aligned}
$$

Single Head: Weighted Average \leftrightarrow Aggregation

new=aggregate(sel, $[1,2,4]$)
\quad
F
F T T
F
F
124
T F

Single Head: Weighted Average \leftrightarrow Aggregation

$$
\begin{aligned}
& \text { new=aggregate(sel, }[1,2,4] \text {) } \\
& \left.\begin{array}{lllll}
& & 124 \\
\text { F T T } & 124 & => \\
\text { F F F F } & 124 & => \\
\text { T F F } & \text { F } & 124 & => \\
0 \\
1
\end{array}\right)=>[3,0,1]
\end{aligned}
$$

Single Head: Weighted Average \leftrightarrow Aggregation

```
    new=aggregate(sel, [1,2,4])
    124
F T T 124 => 3
F F F 124 => 0 => [3,0,1]
T F F 124 => 1
```



```
Symbolic language + no averaging when only one position selected allows (for example):
```

```
reverse=aggregate(flip, [A,B,C])
```

reverse=aggregate(flip, [A,B,C])
A B C
A B C
FFT ABC => C
FFT ABC => C
FT F ABC => B => [C,B,A]
FT F ABC => B => [C,B,A]
TFF ABC => A

```
TFF ABC => A
```


Great!

Now do multi-headed attention

Background - Multi-Headed Self Attention Input

The multi-headed attention lets one layer do multiple single head operations

We do not need 'new' RASP operations to describe it!
(We will just let the RASP compiler know it can place multiple heads on the same layer)

Transformer-Encoder Layer

Transformer-Encoder Layer

RASP (Restricted Access Sequence Processing)

Initial Sequences

```
>> tokens;
    s-op: tokens
        Example: tokens("hello") = [h, e, l, l, o] (strings)
indices;
    s-op: indices
        Example: indices("hello") = [0, 1, 2, 3, 4] (ints)
```

```
>> indices+1;
    s-op: out
        Example: out("hello") = [1, 2, 3, 4, 5] (ints)
>> tokens=="e" or tokens=="o";
    s-op: out
        Example: out("hello") = [F, T, F, F, T] (bools)
```

Selectors, and aggregate

```
sel = select([2,0,0],[0,1,2],==)
    2 lllll
1 F F F
2 T F F
F T T 124 => 3
F F F 124 => 0 => [3,0,1]
TFF 124 => 1
```

```
>> flip = select(length-indices-1,indices,==);
    selector: flip
            Example:
                h e l l o
            h |
            l | 1
            l 1
            0 | 1
>> reverse = aggregate(flip,tokens);
    s-op: reverse
    Example: reverse("hello") = [o, l, l, e, h]
```


RASP Extras

RASP Extras

Extra Sequences

RASP Extras

Extra Sequences

Selector Compositions

```
>> select(indices,3,==) or select(indices,indices,<=);
    selector: out
        Example:
```


RASP Extras

Extra Sequences

Selector Compositions

```
>> select(indices,3,==) or select(indices,indices,<=);
    selector: out
        Example:
```


RASP Extras

Extra Sequences

```
>> length;
    s-op: length
        Example: length("hello") = [5]*5 (ints)
```


Selector Compositions

```
>> select(indices,3,==) or select(indices,indices,<=);
    selector: out
        Example:
```

h e l lo				
h	1			
e	1	1		
1		1	1	
l		1	1	
0		1	1	

RASP Extras

Extra Sequences
Functions

```
>> length;
            Example: length("hello") = [5]*5 (ints)
```


Small Example

Computing length:
>> full_s = select(1,1,==); selector: full_s

Example:

Small Example

Computing length:

```
>> full_s = select(1,1,==);
    selector: full_s
        Example:
```

h e l l o	```s-op: out Example: out("hello") = [1, 0, 0, 0, 0] (ints)```
$\mathrm{h} \left\lvert\, \begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right.$	
e \|llllll	
l \| 11111111	
l\|lllll	
0 \| 111111	
indicator(indices==0)	

Small Example

Computing length:

>> full_s = select(1,1,==); selector: full_s
>> indicator(indices==0);
Example:
h e l lo
h $\left\lvert\, \begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right.$
e | 1111111
l | 1111111
l | 1111111
o | 111111
>> frac_0=aggregate(full_s,indicator(indices==0));
s-op: frac_0
Example: frac_0("hello") = [0.2]*5 (floats)

Small Example

Computing length:

```
>> full_s = select(1,1,==);
    selector: full_s
        Example:
        >> indicator(indices==0);
            h e l l o
                    h | 1 1 1 1 1
                    e | 1 1 1 1 1 1 1
                    l | 1 1 1 1 1
                    l | 1 1 1 1 1
                    o | 1 1 1 1 1
>> frac_0=aggregate(full_s,indicator(indices==0));
    s-op: frac_0
            Example: frac_0("hello") = [0.2]*5 (floats)
>> round(1/frac_0);
    s-op: out
            Example: out("hello") = [5]*5 (ints)
```


Small Example

Computing length:

```
>> full_s = select(1,1,==);
    selector: full_s
        Example:
        >> indicator(indices==0);
            h e l l o
                    h | 1 1 1 1 1
                    e | 1 1 1 1 1 1 1
                    l | 1 1 1 1 1
                    l | 1 1 1 1 1
                            o | 1 1 1 1 1
>> frac_0=aggregate(full_s,indicator(indices==0));
    s-op: frac_0
            Example: frac_0("hello") = [0.2]*5 (floats)
>> round(1/frac_0);
    s-op: out
            Example: out("hello") = [5]*5 (ints)
```


Connection to Reality?

RASP expects 2 layers for arbitrary-length reverse

```
>> flip = select(length-indices-1,indices,==);
    selector: flip
            Example:
```



```
>> reverse = aggregate(flip,tokens);
    s-op: reverse
            Example: reverse("hello") = [o, l, l, e, h] (strings)
```


Connection to Reality?

[>> draw(reverse,"abcdeabcde")

RASP expects 2 layers for arbitrary-length reverse

Connection to Reality?

[>> draw(reverse,"abcdeabcde")

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:
2 layers: 99.6\% accuracy after 20 epochs 1 layer: 39.6\% accuracy after 50 epochs \longleftarrow

Even with compensation for number of heads and parameters!

Connection to Reality?

[>> draw(reverse,"abcdeabcde")

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:

> 2 layers: 99.6\% accuracy after 20 epochs 1 layer: 39.6\% accuracy after 50 epochs

Bonus: the 2 layer transformer's attention patterns:

Layer 1 (full_s)

Connection to Reality?

Example 2: histogram (assuming BOS)

in place histogram, with BOS - examples:
[§,a,a,a,b] -> [0,3,3,3,1] [§,a,b,a,c] -> [0,2,1,2,1] [§,a,b,c,c] -> [0,1,1,2,2]

Connection to Reality?

Example 2: histogram (assuming BOS)

```
>> examples off
|> same_or_0 = select(tokens,tokens,==) or select(indices,0,==);
    selector: same_or_0
>> frac_with_0 = aggreg
    s-op: frac_with_0
|> histogram_assuming_bos = round(1/frac_with_0)-1;
    s-op: histogram_assuming_bos
|> histogram_assuming_bos("§hello");
    = [0, 1, 1, 2, 2, 1] (ints)
```

in place histogram, with BOS - examples:
[§,a,a,a,b] -> [0,3,3,3,1] [§,a,b,a,c] -> [0,2,1,2,1] [§,a,b,c,c] -> [0,1,1,2,2]

Connection to Reality?

Example 2: histogram (assuming BOS)

```
|> examples off
|> same_or_0 = select(tokens,tokens,==) or select(indices,0,==);
    selector: same_or_0
>> frac_with_0 = aggreg
    s-op: frac_with_0
|> histogram_assuming_bos = round(1/frac_with_0)-1;
        s-op: histogram_assuming_bos
>> histogram_assuming_bos("§hello");
    = [0, 1, 1, 2, 2, 1] (ints)
```


RASP analysis:

- Just one attention head
- It focuses on:

1. All positions with same token, and:
2. Position 0 (regardless of content)

Connection to Reality?

Example 2: histogram (assuming BOS)

```
|> examples off
|> same_or_0 = select(tokens,tokens,==) or select(indices,0,==);
        selector: same_or_0
>> frac_with_0 = aggregate(same_or_0,indicator(indices==0));
        s-op: frac_with_0
|> histogram_assuming_bos = round(1/frac_with_0)-1;
        s-op: histogram_assuming_bos
>> histogram_assuming_bos("§hello");
            = [0, 1, 1, 2, 2, 1] (ints)
```


RASP analysis:

- Just one attention head
- It focuses on:

1. All positions with same token, and:
2. Position 0 (regardless of content)

Selector pattern vs trained transformer's attention for same input sequence:

1									
1	1						1		
1		1			1			1	
1			1	1					
1			1	1					
1		1			1			1	
1						1			
1	1						1		
1		1			1			1	
1									1

Connection to Reality?

Example 2: histogram (assuming BOS)

```
>> examples off
|> same_or_0 = select(tokens,tokens,==) or select(indices,0,==);
        selector: same_or_0
>> frac_with_0 = aggreg
        s-op: frac_with_0
|> histogram_assuming_bos = round(1/frac_with_0)-1;
        s-op: histogram_assuming_bos
>> histogram_assuming_bos("§hello");
        = [0, 1, 1, 2, 2, 1] (ints)
```


RASP analysis:

- Just one attention head
- It focuses on:

1. All positions with same token, and:
2. Position 0 (regardless of content)

Selector pattern vs trained transformer's attention for same input sequence:

1									
1	1						1		
1		1			1			1	
1			1	1					
1			1	1					
1		1			1			1	
1						1			
1	1						1		
1		1			1			1	
1									1

Try it out!

Neural Sequence Models: a Formal Lens

Counting
 LSTMs are counter machines, GRUs aren't (AcL 2018)

RASP
Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs

Applying L* to learn DFAs from RNNs (ICML 2018)

+ using the result for CFGs (tacas 2021)

DFAs from RNNs

Previous Approaches

1. Partition RNN state space
2. Explore using pruned BFS or transition sampling

e.g.: Omlin and Giles (1996), Cechin et al. (2003)

Previous Approaches

1. Too coarse: not representative
2. Too fine: very large: slow \& memory consuming extraction

Impractical!

e.g.: Omlin and Giles (1996), Cechin et al. (2003)

L* (Angluin, 1987)

An exact learning algorithm for DFAs
Learns using:

- Membership Queries (request to label input sequence) and
- Equivalence Queries (request to accept/reject DFA)

Creates hypothesis DFA and improves it until accepted by teacher

Iterative Approach

Apply L* to RNN:
Membership queries are trivial
(Equivalence queries are hard)

Use equivalence queries to induce the partitioning of the RNN state space
Use the partitioning to answer the equivalence queries

Iterative Approach

Results

1. Concise, Exact Models in Short Time:

def target(w):
if len $(w)==0$
return True
return $w[0]==w[-1]$
alphabet $=$ "abcd"
Training (4,400 samples to 100% accuracy)

RNN

Extraction
0.2 s

Results

1. Concise, Exact Models in Short Time:
def target(w):
if $\operatorname{len}(w)==0$
return True
return $w[0]==w[-1]$
alphabet = "abcd"

> Training $(4,400$ samples to 100% accuracy $)$

2. Adversarial Examples (finding flaws)

Balanced Parentheses GRU 100% train set accuracy
BP up to depth 11, over alphabet: ()a-z

Counterexamples:

))	(1.1s)		
(0)	(1.2s)		
((0))	(2.1s)		
((())))	(3.1s)	Comparison: Random sampling counterexamples:	
((()0))) $)$	(3.8s)		
(((()(0)))))	(4.4s)		
((((()(0))))))	(6.6s)		
(((()((0)))))))	(9.2s)))	(0.4s)
(((((((v0)))))))	(10.7s)	(0i)ma	(32.6s)

DFAs from RNNs

DFAs from RNNs

CFGs from RNNs

Observation: L-star learning a CFG seems to have structured increases (example on BP)

CFGs from RNNs

Patterns

- Structure
- Entry
- Exit
- Connection Point(s)
- Composable

CFGs from RNNs

Patterns

- Structure
- Entry
- Exit
- Connection Point(s)
- Composable

Rules

- Describe legal compositions
- Legal sequences of DFAs

CFGs from RNNs

Patterns

- Structure
- Entry
- Exit
- Connection Point(s)
- Composable

Rules

- Describe legal compositions
- Legal sequences of DFAs

Result:

Algorithm to recover Pattern Rule Sets from a sequence of DFAs

Sequence can be obtained from L-star extraction

Some tolerance to noise!

Neural Sequence Models: a Formal Lens

Counting

LSTMs are counter machines, GRUs aren't (ACL 2018)

RASP

Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs

Applying L* to learn DFAs from RNNs (ICML 2018)

+ using the result for CFGs (tacas 2021)

Neural Sequence Models: a Formal Lens

WDFAs from RNNs

Adapting L* to the (noisy!) weighted case (Neurips 2019)

A Hierarchy of RNNs

Comparing more RNN architectures, with different angles (ACL 2020)

Thanks!

