
Neural Sequence Models:
A Formal Lens

1

Gail Weiss

= ?

Yoav Goldberg, Eran Yahav

Neural Sequence Models

2

Hi, how are you?

Enjoy your meal!

Salut, comment ça va?

Bon appétit!

Can you [MASK] me [MASK] salt? Can you pass me the salt?

That was great! POSITIVE

…

Hi, how are you?

Enjoy your meal!

Salut, comment ça va?

Bon appétit!

Neural Sequence Models

3

Can you [MASK] me [MASK] salt? Can you pass me the salt?

That was great! POSITIVE

…

?

?

?

Neural Sequence Models

4

Can you [MASK] me [MASK] salt? Can you pass me the salt?

That was great! POSITIVE

…

?

?

Understanding
the Black Box

Hi, how are you?

Enjoy your meal!

Salut, comment ça va?

Bon appétit!?

Neural Sequence Models

5

Can you [MASK] me [MASK] salt? Can you pass me the salt?

That was great! POSITIVE

…

?

?

Understanding
the Black Box

Hi, how are you?

Enjoy your meal!

Salut, comment ça va?

Bon appétit!?

• Reliability (Verifiability)

• Intuition (biases, model selection)

• Knowledge extraction

• Model design?

• Just kinda cool

Neural Sequence Models

6

Can you [MASK] me [MASK] salt? Can you pass me the salt?

That was great! POSITIVE

…

?

?

Understanding
the Black Box

Hi, how are you?

Enjoy your meal!

Salut, comment ça va?

Bon appétit!?

• Reliability (Verifiability)

• Intuition (biases, model selection)

• Knowledge extraction

• Model design

• Just kinda cool

Neural Sequence Models

7

Can you [MASK] me [MASK] salt? Can you pass me the salt?

That was great! POSITIVE

…

?

?

• Reliability (Verifiability)

• Intuition (biases, model selection)

• Knowledge extraction

• Model design

• Just kinda cool

Understanding
the Black Box

Hi, how are you?

Enjoy your meal!

Salut, comment ça va?

Bon appétit!?

Neural Sequence Models

8

Can you [MASK] me [MASK] salt? Can you pass me the salt?

That was great! POSITIVE

…

?

?

• Reliability (Verifiability)

• Intuition (biases, model selection)

• Knowledge extraction

• Model design

• Just kinda cool

Understanding
the Black Box

Hi, how are you?

Enjoy your meal!

Salut, comment ça va?

Bon appétit!?

Natural language is hard…

Neural Sequence Models:
A Formal Lens

9

()(()))(

)()()

PTPPPTFF

FFFFF

abcdefg gfedcba

aaabbb Accept

…

?

?

?

Understanding
the Black Box

• Reliability (Verifiability)

• Intuition (biases, model selection)

• Knowledge extraction

• Model design

• Just kinda cool

Neural Sequence Models:
a Formal Lens

10

Counting
LSTMs are counter machines, GRUs aren’t (ACL 2018)

RASP
Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs
Applying L* to learn DFAs from RNNs (ICML 2018)

 + using the result for CFGs (TACAS 2021)

Counting
LSTMs are counter machines, GRUs aren’t (ACL 2018)

RASP
Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs
Applying L* to learn DFAs from RNNs (ICML 2018)

 + using the result for CFGs (TACAS 2021)

11

Neural Sequence Models:
a Formal Lens

12

(Elman, 1990)

Introduction of RNNs

RNNs

h1RNN
cell

h2RNN
cell

h3RNN
cell …

h0 ht

x1 x2 x3

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

ht = σh(Whxt + Uhht−1 + bh)Elman RNN:

General RNN concept: ht = f(xt, ht−1)

13

(Elman, 1990)

Introduction of RNNs

RNNs

h1RNN
cell

h2RNN
cell

h3RNN
cell …

h0 ht

x1 x2 x3

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

ht = σh(Whxt + Uhht−1 + bh)Elman RNN:

General RNN concept: ht = f(xt, ht−1)

14

(Elman, 1990)

Introduction of RNNs

(Siegelmann and Sonntag, 1993)

 RNNs are Turing Complete

RNNs

Theoretical Power

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

1 101 011 01 0 111 010 00 …

15

(Elman, 1990)

Introduction of RNNs

(Siegelmann and Sonntag, 1993)

 RNNs are Turing Complete

(Hochreiter and Schmidhuber, 1997)

LSTMs

(Cho et al, 2014)

GRUs }

RNNs

Theoretical Power

Practical
Modifications

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

16

(Elman, 1990)

Introduction of RNNs

(Siegelmann and Sonntag, 1993)

 RNNs are Turing Complete

(Hochreiter and Schmidhuber, 1997)

LSTMs

(Cho et al, 2014)

GRUs }

RNNs

Theoretical Power

Practical
Modifications

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)17

(Elman, 1990)

Introduction of RNNs

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

(Siegelmann and Sonntag, 1993)

 RNNs are Turing Complete

(Hochreiter and Schmidhuber, 1997)

LSTMs

(Cho, Merrienboer, Bahdanau, and Bengio, 2014)

GRUs }

RNNs

Theoretical Power

Practical
Modifications

 RNN Turing Completeness Proof (1993):

1. Requires Infinite Precision:
 Uses stack(s), with zeros pushed using division: g = g/4 + 1/4
 In 32 bits, this reaches the limit after 15 pushes

2. Requires Infinite Time:
 And specifically, allows processing beyond reading input
 (Non standard use case!)

18

(Elman, 1990)

Introduction of RNNs

(Siegelmann and Sonntag, 1993)

 RNNs are Turing Complete

(Hochreiter and Schmidhuber, 1997)

LSTMs

(Cho et al, 2014)

GRUs }

Theoretical Power

Practical
Modifications?

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

RNNs

19

GRU LSTM

zt = σ(Wzxt + Uzht−1 + bz)
rt = σ(Wrxt + Urht−1 + br)
h̃t = tanh(Whxt + Uh(rt ∘ ht−1) + bh)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft = σ(Wf xt + Ufht−1 + bf)
it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs
ht = f(xt, ht−1)

20

GRU LSTM

zt = σ(Wzxt + Uzht−1 + bz)
rt = σ(Wrxt + Urht−1 + br)
h̃t = tanh(Whxt + Uh(rt ∘ ht−1) + bh)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft = σ(Wf xt + Ufht−1 + bf)
it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

gates

candidate
vectors

update functions

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs

21

GRU LSTM

zt ∈ (0,1)
rt ∈ (0,1)
h̃t = tanh(Whxt + Uh(rt ∘ ht−1) + bh)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft ∈ (0,1)
it ∈ (0,1)
ot ∈ (0,1)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

gates

candidate
vectors

update functions

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs

22

GRU LSTM

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft ∈ (0,1)
it ∈ (0,1)
ot ∈ (0,1)
c̃t ∈ (−1,1)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

gates

candidate
vectors

update functions

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs

23

GRU LSTM

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft ∈ (0,1)
it ∈ (0,1)
ot ∈ (0,1)
c̃t ∈ (−1,1)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)
Interpolation

Bounded!

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs

24

GRU LSTM

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft ∈ (0,1)
it ∈ (0,1)
ot ∈ (0,1)
c̃t ∈ (−1,1)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

reset/keep, then -

stay/step, by -

subtract/add

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs

25

GRU LSTM

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft ∈ (0,1)
it ∈ (0,1)
ot ∈ (0,1)
c̃t ∈ (−1,1)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

subtract/add

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs

reset/keep, then -

stay/step, by -

26

Counting

anbn anbncn

Palindromes

Regular Languages (RL)

Context Free Languages (CFL)

Context Sensitive Languages (CSL)

Recursively Enumerable Languages (RE)

?

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

27

GRU LSTM

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

Trained , (on positive examples up to length 100)anbn
Activations on a1000b1000

GRU begins failing at length 39

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs

28

GRU LSTM

Trained , (on positive examples up to length 100)anbncn
Activations on a100b100c100

GRU begins failing at length 9

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs

Counting
LSTMs are counter machines, GRUs aren’t (ACL 2018)

RASP
Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs
Applying L* to learn DFAs from RNNs (ICML 2018)

 + using the result for CFGs (TACAS 2021)

29

Neural Sequence Models:
a Formal Lens

Counting
LSTMs are counter machines, GRUs aren’t (ACL 2018)

RASP
Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs
Applying L* to learn DFAs from RNNs (ICML 2018)

 + using the result for CFGs (TACAS 2021)

30

Neural Sequence Models:
a Formal Lens

31

32

RASP

?
Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

33

RASP

?
Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

How is the
transformer…
doing things?

(How) does it count?

(How) does it reason?

(What) does attention explain?

34

Transformers

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

35

Decoder

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Transformers

Encoder

36

Encoder

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Transformers

37

Transformers

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

• Receive their entire input ‘at
once’, processing all tokens in
parallel

• Have multiple layers, such that
the output of one is the input of
the next

38

Transformers

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

• Receive their entire input ‘at
once’, processing all tokens in
parallel

• Have a fixed number of layers,
such that the output of one is
the input of the next

39

Transformers

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

• Receive their entire input ‘at
once’, processing all tokens in
parallel

• Have a fixed number of layers,
such that the output of one is
the input of the next

Computation “progresses” along network depth… not input length

40

Transformers

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Encoder Layer 1

x1 x2 x3

Layer input/outputs are “variables” of a transformer “program”
The layers themselves are “operations”

p(0) p(1) p(2)e(I) e(Like) e(dogs)

y1
1 y1

2 y1
3

Encoder Layer L

yL
1 yL

2 yL
3

I Like Dogs
tokens = positionwise_embeddings(input)

indices = positionwise_indices(input)

 = tokens+indices

 = ()

 = ()

…

 = = ()

x

y1 L1 x

y2 L2 y1

y yL LL yL−1

…

41 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

RASP (Restricted Access Sequence Processing)

42 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

RASP (Restricted Access Sequence Processing)
• A transformer-encoder is a sequence to sequence function (“sequence operator”, or, “s-op”)

• Its layers apply operations to the sequences

• RASP builds s-ops, constrained to a transformer’s inputs and possible operations

• (The s-ops are the transformer abstractions!)

RASP base s-ops

43 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

I

Like

Dogs
Positional

Embedding

p(0)
p(1)
p(2)

dx

Word
Embedding

e(I)
e(Like)
e(dogs)

dx tokens and indices are RASP built-ins:

The information before a
transformer has done anything

(“0 layer transformer”)

RASP base s-ops

44 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

The RASP REPL gives you
examples (until you ask it not to)

I

Like

Dogs
Positional

Embedding

p(0)
p(1)
p(2)

dx

Word
Embedding

e(I)
e(Like)
e(dogs)

dx tokens and indices are RASP built-ins:

The information before a
transformer has done anything

(“0 layer transformer”)

45 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Okay, now what?

To know what operations RASP may have, we must
inspect the transformer-encoder layers!

46

Transformer-Encoder Layer
Input

x1

x2

x3

dx

Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

Wff
1

 o′ 1

 o′ 2

 o′ 3

dx

 ff1
 ff2
 ff3

dff

Wff
2

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

ReLU

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer
There’s a lot in here…

46

47

Feed-Forward Sublayer
Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

 o′ 1

 o′ 2

 o′ 3

dx

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Wff
1

 ff1
 ff2
 ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Input

x1

x2

x3

dx

Multilayer Feedforward Networks are
Universal Approximators (Hornik et al,

1989)47

48 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Feed-Forward Sublayer

49 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

So far

Are we all-powerful
(well, transformer-powerful) yet?

50

Attention Sublayer

A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

 o′ 1

 o′ 2

 o′ 3

dx

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Wff
1

 ff1
 ff2
 ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Multi-Head Attention

Input

x1

x2

x3

dx

elementwise

elementwise

Attention is all you need!

50

Background - Multi Head Attention

Starting from single-head attention…

51 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Background - Self Attention (Single Head)
input

 x1

 x2

 x3

dx

52 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

Background - Self Attention (Single Head)

53 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

Background - Self Attention (Single Head)

54 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

q1 ⋅ k1

Background - Self Attention (Single Head)
scores

55 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

q1 ⋅ k1 q1 ⋅ k2

Background - Self Attention (Single Head)
scores

56 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

scores

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

Background - Self Attention (Single Head)

57 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

normalise (i.e.)× 1/ dk

softmax

scores

 q1

 q2

 q3

w1,1 w1,2 w1,3

weights

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

Background - Self Attention (Single Head)

58 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

dv

 k1

 k2

 k3

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

w1,1 w1,2 w1,3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

Background - Self Attention (Single Head)

 v1

 v2

 v3
59 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

V

input

 x1

 x2

 x3

 out1

dx

dk

dk

dv

 k1

 k2

 k3

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

w1,1 w1,2 w1,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

dv

Background - Self Attention (Single Head)

60 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

V

input

 x1

 x2

 x3

 out2

dx

dk

dk

dv

 k1

 k2

 k3

q2 ⋅ k1 q2 ⋅ k2 q2 ⋅ k3

w2,1 w2,2 w2,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out1

dv

Background - Self Attention (Single Head)

61 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

V

input

 x1

 x2

 x3

 out3

dx

dk

dk

dv

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out2

 out1

dv

Background - Self Attention (Single Head)

62 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

dv

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dv

Attention Head

Background - Self Attention (Single Head)

63 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

So, how do we present an
attention head?

64 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

Self Attention (Single Head)

dx65 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Pairwise!

Self Attention (Single Head)

66 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Self Attention (Single Head)

67 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Single Head: Scoring Selecting↔

Pairwise!

68 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

69 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

70 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

71 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

72 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

73 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

74 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

75 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔

sel2 = select([2,0,0],[0,1,2],>=)

 2 0 0
0 T T T
1 T F F
2 T F F

Another example:

Decision: RASP abstracts to binary

select/don’t select decisions

76 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

prevs = select([0,1,2],[0,1,2],<=)

 0 1 0
0 T F F
1 T T F
2 T T T

Single Head: Scoring Selecting↔

77 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

prevs = select([0,1,2],[0,1,2],<=)

 0 1 2
0 T F F
1 T T F
2 T T T

Single Head: Scoring Selecting↔

 k1

 k2

 k3

(1, 0, 0, …)

(0, 1, 0, …)

(0, 0, 1, …)

78 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

prevs = select([0,1,2],[0,1,2],<=)

 0 1 2
0 T F F
1 T T F
2 T T T

Single Head: Scoring Selecting↔

 q1

 q2

 q3

(1, 0, 0, …)
(1, 1, 0, …)
(1, 1, 1, …)

 k1

 k2

 k3

(1, 0, 0, …)

(0, 1, 0, …)

(0, 0, 1, …)

79 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Single Head: Weighted Average Aggregation↔

80 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

81 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

82 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

83 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

84 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

85 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

86 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

reverse=aggregate(flip, [A,B,C])

 . ….. A B C
 F F T A B C => C
 F T F A B C => B => [C,B,A]
 T F F A B C => A

Symbolic language + no averaging when only
one position selected allows (for example):

87 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Great!
Now do multi-headed attention

88 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Input

x1

x2

x3

dx

Background - Multi-Headed Self Attention

out1
3

out1
2

out1
1

dh

Head 1

dk = dv = dh =
dx

H

out2
3

out2
2

out2
1

dh

Head 2

outH
3

outH
2

outH
1

dh

Head H. . .

. . .

. . .

. . .

Concatenate

Output

out1
out2
out3

dx

x1

x2

x3

dh dh dh
. . .

89

The multi-headed attention lets one
layer do multiple single head operations

We do not need ‘new’ RASP operations to describe it!

90 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

(We will just let the RASP compiler know it can place multiple heads on the same layer)

91

Transformer-Encoder Layer
Input

x1

x2

x3

dx

Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

Wff
1

 o′ 1

 o′ 2

 o′ 3

dx

 ff1
 ff2
 ff3

dff

Wff
2

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

ReLU

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer

91

92

Transformer-Encoder Layer
Input

x1

x2

x3

dx

Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

Wff
1

 o′ 1

 o′ 2

 o′ 3

dx

 ff1
 ff2
 ff3

dff

Wff
2

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

ReLU

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer

92

Layernorm

Open Question!!

Layer
Norm 1

Layer
Norm 2

RASP (Restricted Access Sequence Processing)

Initial Sequences Elementwise application of atomic operations

Selectors, and aggregate

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

93 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

RASP Extras

94 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

RASP Extras
Extra Sequences

95 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

RASP Extras
Extra Sequences

Selector Compositions

96 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

RASP Extras
Extra Sequences

Selector Compositions

Functions

97 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

RASP Extras
Extra Sequences

Selector Compositions

Functions

Library Functions

98 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

RASP Extras
Extra Sequences

Selector Compositions

Functions

Library Functions

99 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Small Example
Computing length:

100 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Small Example
Computing length:

101 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Small Example
Computing length:

102 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Small Example
Computing length:

103 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Small Example
Computing length:

104 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Can you see how to use
this trick for

selector_width?

Connection to Reality?
RASP expects 2 layers for arbitrary-length reverse

105 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

106 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:

2 layers: 99.6% accuracy after 20 epochs

1 layer: 39.6% accuracy after 50 epochs

Even with
compensation for
number of heads
and parameters!

107 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:

2 layers: 99.6% accuracy after 20 epochs

1 layer: 39.6% accuracy after 50 epochs

Bonus: the 2 layer transformer’s attention patterns:

Layer 1 (full_s) Layer 2 (flip_s)

108 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Even with
compensation for
number of heads
and parameters!

Connection to Reality?
Example 2: histogram (assuming BOS)

109 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

in place histogram,
with BOS - examples:

[§,a,a,a,b] -> [0,3,3,3,1]

[§,a,b,a,c] -> [0,2,1,2,1]

[§,a,b,c,c] -> [0,1,1,2,2]

Connection to Reality?
Example 2: histogram (assuming BOS)

110 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

in place histogram,
with BOS - examples:

[§,a,a,a,b] -> [0,3,3,3,1]

[§,a,b,a,c] -> [0,2,1,2,1]

[§,a,b,c,c] -> [0,1,1,2,2]

Connection to Reality?
Example 2: histogram (assuming BOS)

111 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

RASP analysis:

• Just one attention head

• It focuses on:

1. All positions with same token, and:

2. Position 0 (regardless of content)

Connection to Reality?
RASP analysis:

• Just one attention head

• It focuses on:

1. All positions with same token, and:

2. Position 0 (regardless of content)

Selector pattern vs trained
transformer’s attention for same

input sequence:

Example 2: histogram (assuming BOS)

112 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Connection to Reality?
RASP analysis:

• Just one attention head

• It focuses on:

1. All positions with same token, and:

2. Position 0 (regardless of content)

Selector pattern vs trained
transformer’s attention for same

input sequence:

Example 2: histogram (assuming BOS)

113 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Try it out!

 🌟 github.com/tech-srl/RASP 🌟

http://github.com/tech-srl/RASP

Counting
LSTMs are counter machines, GRUs aren’t (ACL 2018)

RASP
Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs
Applying L* to learn DFAs from RNNs (ICML 2018)

 + using the result for CFGs (TACAS 2021)

114

Neural Sequence Models:
a Formal Lens

115 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

DFAs from RNNs

Goal:
Concise (Meaningful) Model

from Trained RNN

116 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Previous Approaches
1. Partition RNN state space

2. Explore using pruned BFS or transition sampling

RNN
State Space s0

s1

s2

s3s4

Partition

BFS

DFA

e.g.: Omlin and Giles (1996), Cechin et al. (2003)

117 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Previous Approaches
1. Too coarse: not representative

2. Too fine: very large: slow & memory consuming extraction

Impractical!

RNN
State Space s0

s1

s2

s3s4

Partition

BFS

DFA

e.g.: Omlin and Giles (1996), Cechin et al. (2003)

118 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

L* (Angluin, 1987)
An exact learning algorithm for DFAs

Learns using:

• Membership Queries (request to label input sequence) and

• Equivalence Queries (request to accept/reject DFA)

Creates hypothesis DFA and improves it until accepted by teacher

ε?
a?
b?

? bb?
bab?

baa?
bba?

…

ba

??

abb?

abab?

abba?
aaa?

aa?

…
aba

119 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach
Apply L* to RNN:

Membership queries are trivial

 (Equivalence queries are hard)

Use equivalence queries to induce the partitioning of the RNN state
space

Use the partitioning to answer the equivalence queries

120 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach

?

a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?

aba

121 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?

aba

122 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?

RNN says:

aba

123 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?

RNN says:

124 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach
a

a

b

s0

s1

s2

s3
s4

Partitioning

L* ababb?
bab?

baa?
bba?

…

s0

s1

s2

s3s4

ε?
a?
b?

RNN says:

125 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* ababb?
bab?

baa?
bba?

…

ε?
a?
b?

RNN says:

aba

126 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?

RNN says:

aba

127 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?

RNN says:

aba

128 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?

aba

RNN says:

aba

129 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* ε?
a?
b?

bb?
bab?

baa?
bba?

…

RNN says:

aba

aba

130 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* ε?
a?
b?

abb?

abab?

abba?
aaa?

aa?

…

bb?
bab?

baa?
bba?

…

RNN says:

aba

aba

131 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* ε?
a?
b?

abb?

abab?

abba?
aaa?

aa?

…

?
bb?

bab?
baa?

bba?
…

RNN says:

aba

132 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Results
1. Concise, Exact Models in Short Time:

RNN

Training

Extraction
0.2s

(4,400 samples to 100% accuracy)

133 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Results
1. Concise, Exact Models in Short Time:

RNN

Training

Extraction
0.2s

(4,400 samples to 100% accuracy)

Balanced Parentheses GRU
100% train set accuracy
BP up to depth 11, over alphabet: ()a-z

Counterexamples:

Comparison:
Random sampling
 counterexamples:

)) (1.1s)
(()) (1.2s)

((())) (2.1s)

(((()))) (3.1s)

((((())))) (3.8s)

(((((()))))) (4.4s)

((((((())))))) (6.6s)

(((((((()))))))) (9.2s)

((((((((v()))))))) (10.7s)

((((((((a()z))))))))) (8.3s)

)) (0.4s)
(()i)ma (32.6s)

2. Adversarial Examples (finding flaws)

134 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

DFAs from RNNs

Goal:
Concise (Meaningful) Model

from Trained RNN DFA
PDFA
CFG

135

DFAs from RNNs

Goal:
Concise (Meaningful) Model

from Trained RNN DFA
PDFA
CFG

Synthesising Context Free Grammars from Recurrent Neural Networks (Yellin, Weiss, TACAS 2021)

136

CFGs from RNNs
Observation: L-star learning a CFG seems to have structured increases (example on BP)

etc…

Synthesising Context Free Grammars from Recurrent Neural Networks (Yellin, Weiss, TACAS 2021)

137

CFGs from RNNs

Synthesising Context Free Grammars from Recurrent Neural Networks (Yellin, Weiss, TACAS 2021)

… …

Patterns
• Structure

• Entry

• Exit

• Connection Point(s)

• Composable

• Connection points are on
compositions

138

CFGs from RNNs

Synthesising Context Free Grammars from Recurrent Neural Networks (Yellin, Weiss, TACAS 2021)

… …

Patterns
• Structure

• Entry

• Exit

• Connection Point(s)

• Composable

• Connection points are on
compositions

Rules
• Describe legal compositions

• Legal sequences of DFAs

139

CFGs from RNNs

Synthesising Context Free Grammars from Recurrent Neural Networks (Yellin, Weiss, TACAS 2021)

… …

Patterns
• Structure

• Entry

• Exit

• Connection Point(s)

• Composable

• Connection points are on
compositions

Rules
• Describe legal compositions

• Legal sequences of DFAs

Result:
Algorithm to recover

Pattern Rule Sets from a
sequence of DFAs

Sequence can be obtained
from L-star extraction

Some tolerance to noise!

140

Counting
LSTMs are counter machines, GRUs aren’t (ACL 2018)

RASP
Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs
Applying L* to learn DFAs from RNNs (ICML 2018)

 + using the result for CFGs (TACAS 2021)

Neural Sequence Models:
a Formal Lens

WDFAs from RNNs
Adapting L* to the (noisy!) weighted case (Neurips 2019)

A Hierarchy of RNNs
Comparing more RNN architectures, with different angles (ACL 2020)

141

Neural Sequence Models:
a Formal Lens

Thanks!

142

