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(Siegelmann and Sonntag, 1993)

 RNNs are Turing Complete

(Hochreiter and Schmidhuber, 1997) 

LSTMs

(Cho, Merrienboer, Bahdanau, and Bengio, 2014) 

GRUs }

RNNs

Theoretical Power

Practical 
Modifications

 RNN Turing Completeness Proof (1993): 

1. Requires Infinite Precision: 
          Uses stack(s), with zeros pushed using division: g = g/4 + 1/4 
                              In 32 bits, this reaches the limit after 15 pushes 

2. Requires Infinite Time: 
            And specifically, allows processing beyond reading input 
                      (Non standard use case!) 
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Introduction of RNNs

(Siegelmann and Sonntag, 1993)

 RNNs are Turing Complete

(Hochreiter and Schmidhuber, 1997) 

LSTMs

(Cho et al, 2014) 

GRUs }

Theoretical Power

Practical 
Modifications?

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)
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GRU LSTM

zt = σ(Wzxt + Uzht−1 + bz)
rt = σ(Wrxt + Urht−1 + br)
h̃t = tanh(Whxt + Uh(rt ∘ ht−1) + bh)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft = σ(Wf xt + Ufht−1 + bf)
it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs
ht = f(xt, ht−1)



20

GRU LSTM

zt = σ(Wzxt + Uzht−1 + bz)
rt = σ(Wrxt + Urht−1 + br)
h̃t = tanh(Whxt + Uh(rt ∘ ht−1) + bh)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft = σ(Wf xt + Ufht−1 + bf)
it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

gates

candidate  
vectors

update functions

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs



21

GRU LSTM

zt ∈ (0,1)
rt ∈ (0,1)
h̃t = tanh(Whxt + Uh(rt ∘ ht−1) + bh)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft ∈ (0,1)
it ∈ (0,1)
ot ∈ (0,1)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

gates

candidate  
vectors

update functions

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs



22

GRU LSTM

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft ∈ (0,1)
it ∈ (0,1)
ot ∈ (0,1)
c̃t ∈ (−1,1)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

gates

candidate  
vectors

update functions

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs



23

GRU LSTM

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft ∈ (0,1)
it ∈ (0,1)
ot ∈ (0,1)
c̃t ∈ (−1,1)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)
Interpolation

Bounded!
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Counting

anbn anbncn

Palindromes

Regular Languages (RL)

Context Free Languages (CFL)

Context Sensitive Languages (CSL)

Recursively Enumerable Languages (RE)

?

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)
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(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can
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These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
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to learn the desired concept classes using back-
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structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

Trained                ,  (on positive examples up to length 100)anbn
Activations on                         a1000b1000

GRU begins failing at length 39

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs
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recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

On the Practical Computational Power of Finite Precision RNNs for Language Recognition (Weiss, Goldberg, Yahav, ACL 2018)

Practical RNNs



Counting 
LSTMs are counter machines, GRUs aren’t (ACL 2018)


RASP 
Finding a formalism to describe transformers (ICML 2021) 

DFAs from RNNs 
Applying L* to learn DFAs from RNNs (ICML 2018) 

   + using the result for CFGs (TACAS 2021)
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DFAs from RNNs 
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Neural Sequence Models: 
a Formal Lens
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RASP

?
Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)



33

RASP

?
Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

How is the 
transformer… 
doing things?

(How) does it count?

(How) does it reason?

(What) does attention explain?



34

Transformers

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)
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Decoder

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Transformers

Encoder
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Encoder

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Transformers
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Transformers

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

• Receive their entire input ‘at 
once’, processing all tokens in 
parallel


• Have multiple layers, such that 
the output of one is the input of 
the next
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Transformers

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

• Receive their entire input ‘at 
once’, processing all tokens in 
parallel


• Have a fixed number of layers, 
such that the output of one is 
the input of the next
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Transformers

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

• Receive their entire input ‘at 
once’, processing all tokens in 
parallel


• Have a fixed number of layers, 
such that the output of one is 
the input of the next

Computation “progresses” along network depth… not input length
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Transformers

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Encoder Layer 1

x1 x2 x3

Layer input/outputs are “variables” of a transformer “program”
The layers themselves are “operations”

p(0) p(1) p(2)e(I) e(Like) e(dogs)

y1
1 y1

2 y1
3

Encoder Layer L

yL
1 yL

2 yL
3

I Like Dogs
tokens = positionwise_embeddings(input)


indices = positionwise_indices(input)


 = tokens+indices


 = ( )


 = ( )


…

 =  =  (  )

x

y1 L1 x

y2 L2 y1

y yL LL yL−1

…
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RASP (Restricted Access Sequence Processing)



42 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

RASP (Restricted Access Sequence Processing)
• A transformer-encoder is a sequence to sequence function (“sequence operator”, or, “s-op”) 

• Its layers apply operations to the sequences 

• RASP builds s-ops, constrained to a transformer’s inputs and possible operations 

• (The s-ops are the transformer abstractions!)



RASP base s-ops

43 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

I

Like

Dogs
Positional  

Embedding

p(0)
p(1)
p(2)

dx

Word  
Embedding

e(I)
e(Like)
e(dogs)

dx tokens and indices are RASP built-ins:

The information before a 
transformer has done anything


(“0 layer transformer”)



RASP base s-ops

44 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

The RASP REPL gives you 
examples (until you ask it not to)

I

Like

Dogs
Positional  

Embedding

p(0)
p(1)
p(2)

dx

Word  
Embedding

e(I)
e(Like)
e(dogs)

dx tokens and indices are RASP built-ins:

The information before a 
transformer has done anything


(“0 layer transformer”)
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Okay, now what?

To know what operations RASP may have, we must 
inspect the transformer-encoder layers!
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Transformer-Encoder Layer
Input

x1

x2

x3

dx

Multi-Head Attention A

Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1

          o1

          o2

          o3

dx

Wff
1

          o′ 1

          o′ 2

          o′ 3

dx

          ff1
          ff2
          ff3

dff

Wff
2

          o′ ′ 1

          o′ ′ 2

          o′ ′ 3

dx

ReLU

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer
There’s a lot in here…

46



47

Feed-Forward Sublayer
Multi-Head Attention A

Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1

          o1

          o2

          o3

dx

          o′ 1

          o′ 2

          o′ 3

dx

          o′ ′ 1

          o′ ′ 2

          o′ ′ 3

dx

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Wff
1

          ff1
          ff2
          ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Input

x1

x2

x3

dx

Multilayer Feedforward Networks are 
Universal Approximators (Hornik et al, 

1989)47



48 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Feed-Forward Sublayer
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So far

Are we all-powerful  
(well, transformer-powerful) yet?
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Attention Sublayer

A

Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1

          o1

          o2

          o3

dx

          o′ 1

          o′ 2

          o′ 3

dx

          o′ ′ 1

          o′ ′ 2

          o′ ′ 3

dx

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Wff
1

          ff1
          ff2
          ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Multi-Head Attention

Input

x1

x2

x3

dx

elementwise

elementwise

Attention is all you need!
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Background - Multi Head Attention

Starting from single-head attention…

51 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)



Background - Self Attention (Single Head)
input

          x1

          x2

          x3

dx

52 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)



Q

K

input

          x1

          x2

          x3

dx

dk

dk

          q1

          q2

          q3

          k1

          k2

          k3

Background - Self Attention (Single Head)
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Q

K

input

          x1

          x2

          x3

dx

dk

dk

          q1

          q2

          q3

          k1

          k2

          k3

Background - Self Attention (Single Head)
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Q

K

input

          x1

          x2

          x3

dx

dk

dk

          q1

          q2

          q3

          k1

          k2

          k3

q1 ⋅ k1

Background - Self Attention (Single Head)
scores
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Q

K

input

          x1

          x2

          x3

dx

dk

dk

          q1

          q2

          q3

          k1

          k2

          k3

q1 ⋅ k1 q1 ⋅ k2

Background - Self Attention (Single Head)
scores
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Q

K

input

          x1

          x2

          x3

dx

dk

dk

          q1

          q2

          q3

          k1

          k2

          k3

scores

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

Background - Self Attention (Single Head)
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Q

K

input

          x1

          x2

          x3

dx

dk

dk

          k1

          k2

          k3

normalise (i.e.  )× 1/ dk

softmax

scores

          q1

          q2

          q3

w1,1 w1,2 w1,3

weights

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

Background - Self Attention (Single Head)
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Q

K

V

input

          x1

          x2

          x3

dx

dk

dk

dv

          k1

          k2

          k3

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

w1,1 w1,2 w1,3

normalise (i.e.  )× 1/ dk

softmax

scores

weights

          q1

          q2

          q3

Background - Self Attention (Single Head)

          v1

          v2

          v3
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Q

K

V

input

          x1

          x2

          x3

          out1

dx

dk

dk

dv

          k1

          k2

          k3

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

w1,1 w1,2 w1,3

          v1

          v2

          v3

normalise (i.e.  )× 1/ dk

softmax

scores

weights

          q1

          q2

          q3

dv

Background - Self Attention (Single Head)

60 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)



Q

K

V

input

          x1

          x2

          x3

          out2

dx

dk

dk

dv

          k1

          k2

          k3

q2 ⋅ k1 q2 ⋅ k2 q2 ⋅ k3

w2,1 w2,2 w2,3

          v1

          v2

          v3

normalise (i.e.  )× 1/ dk

softmax

scores

weights

          q1

          q2

          q3

          out1

dv

Background - Self Attention (Single Head)
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Q

K

V

input

          x1

          x2

          x3

          out3

dx

dk

dk

dv

          k1

          k2

          k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

          v1

          v2

          v3

normalise (i.e.  )× 1/ dk

softmax

scores

weights

          q1

          q2

          q3

          out2

          out1

dv

Background - Self Attention (Single Head)
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Q

K

V

input

          x1

          x2

          x3

dx

dk

dk

dv

          k1

          k2

          k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

          v1

          v2

          v3

normalise (i.e.  )× 1/ dk

softmax

scores

weights

          q1

          q2

          q3

          out3

          out2

          out1

dv

Attention Head

Background - Self Attention (Single Head)
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So, how do we present an 
attention head?
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Q

K

V

input

          x1

          x2

          x3

dx

dk

dk

          k1

          k2

          k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

          v1

          v2

          v3

normalise (i.e.  )× 1/ dk

softmax

scores

weights

          q1

          q2

          q3

          out3

          out2

          out1

dx

Attention Head

Self Attention (Single Head)
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Q

K

V

input

          x1

          x2

          x3

dx

dk

dk

          k1

          k2

          k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

          v1

          v2

          v3

normalise (i.e.  )× 1/ dk

softmax

scores

weights

          q1

          q2

          q3

          out3

          out2

          out1

dx

Attention Head

dx

Pairwise!

Self Attention (Single Head)
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Q

K

V

input

          x1

          x2

          x3

dx

dk

dk

          k1

          k2

          k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

          v1

          v2

          v3

normalise (i.e.  )× 1/ dk

softmax

scores

weights

          q1

          q2

          q3

          out3

          out2

          out1

dx

Attention Head

dx

Self Attention (Single Head)
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Q

K

V

input

          x1

          x2

          x3

dx

dk

dk

          k1

          k2

          k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

          v1

          v2

          v3

normalise (i.e.  )× 1/ dk

softmax

scores

weights

          q1

          q2

          q3

          out3

          out2

          out1

dx

Attention Head

dx

Single Head: Scoring  Selecting↔

Pairwise!

68 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)



sel = select([2,0,0],[0,1,2],==)

    2  0  0 
0  F  T  T 
1  F  F  F 
2  T  F  F

Single Head: Scoring  Selecting↔
Decision: RASP abstracts to binary 


select/don’t select decisions
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sel = select([2,0,0],[0,1,2],==)

    2  0  0 
0  F  T  T 
1  F  F  F 
2  T  F  F

Single Head: Scoring  Selecting↔
Decision: RASP abstracts to binary 


select/don’t select decisions
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sel = select([2,0,0],[0,1,2],==)

    2  0  0 
0  F  T  T 
1  F  F  F 
2  T  F  F

Single Head: Scoring  Selecting↔
Decision: RASP abstracts to binary 


select/don’t select decisions
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sel = select([2,0,0],[0,1,2],==)

    2  0  0 
0  F  T  T 
1  F  F  F 
2  T  F  F

Single Head: Scoring  Selecting↔
Decision: RASP abstracts to binary 


select/don’t select decisions
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sel = select([2,0,0],[0,1,2],==)

    2  0  0 
0  F  T  T 
1  F  F  F 
2  T  F  F

Single Head: Scoring  Selecting↔
Decision: RASP abstracts to binary 


select/don’t select decisions
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sel = select([2,0,0],[0,1,2],==)

    2  0  0 
0  F  T  T 
1  F  F  F 
2  T  F  F

Single Head: Scoring  Selecting↔
Decision: RASP abstracts to binary 


select/don’t select decisions
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sel = select([2,0,0],[0,1,2],==)

    2  0  0 
0  F  T  T 
1  F  F  F 
2  T  F  F

Single Head: Scoring  Selecting↔
Decision: RASP abstracts to binary 


select/don’t select decisions
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sel = select([2,0,0],[0,1,2],==)

    2  0  0 
0  F  T  T 
1  F  F  F 
2  T  F  F

Single Head: Scoring  Selecting↔

sel2 = select([2,0,0],[0,1,2],>=)

    2  0  0 
0  T  T  T 
1  T  F  F 
2  T  F  F

Another example:

Decision: RASP abstracts to binary 

select/don’t select decisions
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prevs = select([0,1,2],[0,1,2],<=)

    0  1  0 
0  T  F  F 
1  T  T  F 
2  T  T  T

Single Head: Scoring  Selecting↔
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prevs = select([0,1,2],[0,1,2],<=)

    0  1  2 
0  T  F  F 
1  T  T  F 
2  T  T  T

Single Head: Scoring  Selecting↔

                                           k1

                                           k2

                                           k3

(1, 0, 0, …)

(0, 1, 0, …)

(0, 0, 1, …)
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prevs = select([0,1,2],[0,1,2],<=)

    0  1  2 
0  T  F  F 
1  T  T  F 
2  T  T  T

Single Head: Scoring  Selecting↔

                                            q1

                                           q2

                                           q3

(1, 0, 0, …)
(1, 1, 0, …)
(1, 1, 1, …)

                                           k1

                                           k2

                                           k3

(1, 0, 0, …)

(0, 1, 0, …)

(0, 0, 1, …)

79 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)



Q

K

V

input

          x1

          x2

          x3

dx

dk

dk

          k1

          k2

          k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

          v1

          v2

          v3

normalise (i.e.  )× 1/ dk

softmax

scores

weights

          q1

          q2

          q3

          out3

          out2

          out1

dx

Attention Head

dx

Single Head: Weighted Average  Aggregation↔
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Single Head: Weighted Average  Aggregation↔
new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1
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Single Head: Weighted Average  Aggregation↔
new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1
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Single Head: Weighted Average  Aggregation↔
new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1

83 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)



Single Head: Weighted Average  Aggregation↔
new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1
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Single Head: Weighted Average  Aggregation↔
new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1
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Single Head: Weighted Average  Aggregation↔
new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1
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Single Head: Weighted Average  Aggregation↔
new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1

reverse=aggregate(flip, [A,B,C])

       . ….. A B C  
 F  F  T    A B C   =>   C 
 F  T  F    A B C   =>   B  =>   [C,B,A] 
 T  F  F    A B C   =>   A

Symbolic language + no averaging when only 
one position selected allows (for example):
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Great!  
Now do multi-headed attention
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Input

x1

x2

x3

dx

Background - Multi-Headed Self Attention

out1
3

out1
2

out1
1

dh

Head 1

dk = dv = dh =
dx

H

out2
3

out2
2

out2
1

dh

Head 2

outH
3

outH
2

outH
1

dh

Head H. . .

. . .

. . .

. . .

Concatenate

Output

out1
out2
out3

dx

x1

x2

x3

dh dh dh
. . .

89



The multi-headed attention lets one 
layer do multiple single head operations

We do not need ‘new’ RASP operations to describe it!

90 Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

(We will just let the RASP compiler know it can place multiple heads on the same layer)
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Transformer-Encoder Layer
Input

x1

x2

x3

dx

Multi-Head Attention A

Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1

          o1

          o2

          o3

dx

Wff
1

          o′ 1

          o′ 2

          o′ 3

dx

          ff1
          ff2
          ff3

dff

Wff
2

          o′ ′ 1

          o′ ′ 2

          o′ ′ 3

dx

ReLU

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer
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Transformer-Encoder Layer
Input

x1

x2

x3

dx

Multi-Head Attention A

Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1

          o1

          o2

          o3

dx

Wff
1

          o′ 1

          o′ 2

          o′ 3

dx

          ff1
          ff2
          ff3

dff

Wff
2

          o′ ′ 1

          o′ ′ 2

          o′ ′ 3

dx

ReLU

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer

92

Layernorm

Open Question!!

Layer 
Norm 1

Layer 
Norm 2



RASP (Restricted Access Sequence Processing)

Initial Sequences Elementwise application of atomic operations

Selectors, and aggregate

sel = select([2,0,0],[0,1,2],==)

    2  0  0 
0  F  T  T 
1  F  F  F 
2  T  F  F

new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1
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RASP Extras
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RASP Extras
Extra Sequences
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RASP Extras
Extra Sequences

Selector Compositions
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RASP Extras
Extra Sequences

Selector Compositions

Functions

Library Functions
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Small Example
Computing length:
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Small Example
Computing length:
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Can you see how to use 
this trick for 

selector_width?



Connection to Reality?
RASP expects 2 layers for arbitrary-length reverse
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Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse
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Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:


2 layers: 99.6% accuracy after 20 epochs

1 layer: 39.6% accuracy after 50 epochs

Even with 
compensation for 
number of heads 
and parameters!
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Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:


2 layers: 99.6% accuracy after 20 epochs

1 layer: 39.6% accuracy after 50 epochs

Bonus: the 2 layer transformer’s attention patterns:

Layer 1  (full_s) Layer 2  (flip_s)
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Even with 
compensation for 
number of heads 
and parameters!



Connection to Reality?
Example 2: histogram  (assuming BOS)
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in place histogram, 
with BOS - examples:

[§,a,a,a,b] -> [0,3,3,3,1]

[§,a,b,a,c] -> [0,2,1,2,1]

[§,a,b,c,c] -> [0,1,1,2,2]
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in place histogram, 
with BOS - examples:

[§,a,a,a,b] -> [0,3,3,3,1]

[§,a,b,a,c] -> [0,2,1,2,1]

[§,a,b,c,c] -> [0,1,1,2,2]




Connection to Reality?
Example 2: histogram  (assuming BOS)
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RASP analysis:

• Just one attention head

• It focuses on: 


1. All positions with same token, and:

2. Position 0 (regardless of content)



Connection to Reality?
RASP analysis:

• Just one attention head

• It focuses on: 


1. All positions with same token, and:

2. Position 0 (regardless of content)

Selector pattern vs trained 
transformer’s attention for same 

input sequence:

Example 2: histogram  (assuming BOS)
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Connection to Reality?
RASP analysis:

• Just one attention head

• It focuses on: 


1. All positions with same token, and:

2. Position 0 (regardless of content)

Selector pattern vs trained 
transformer’s attention for same 

input sequence:

Example 2: histogram  (assuming BOS)
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Try it out!

   🌟  github.com/tech-srl/RASP  🌟

http://github.com/tech-srl/RASP


Counting 
LSTMs are counter machines, GRUs aren’t (ACL 2018)


RASP 
Finding a formalism to describe transformers (ICML 2021) 

DFAs from RNNs 
Applying L* to learn DFAs from RNNs (ICML 2018) 

   + using the result for CFGs (TACAS 2021)
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Neural Sequence Models: 
a Formal Lens



115 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

DFAs from RNNs

Goal: 
Concise (Meaningful) Model 

from Trained RNN
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Previous Approaches
1. Partition RNN state space

2. Explore using pruned BFS or transition sampling

RNN 
State Space s0

s1

s2

s3s4

Partition

BFS

DFA

e.g.: Omlin and Giles (1996), Cechin et al. (2003)
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Previous Approaches
1. Too coarse: not representative 

2. Too fine: very large: slow & memory consuming extraction 

Impractical!

RNN 
State Space s0

s1

s2

s3s4

Partition

BFS

DFA

e.g.: Omlin and Giles (1996), Cechin et al. (2003)
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L* (Angluin, 1987)
An exact learning algorithm for DFAs


Learns using:


• Membership Queries (request to label input sequence) and


• Equivalence Queries (request to accept/reject DFA)


Creates hypothesis DFA and improves it until accepted by teacher

ε?
a?
b?

? bb?
bab?

baa?
bba?

…

ba

??

abb?

abab?

abba?
aaa?

aa?

…
aba
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Iterative Approach
Apply L* to RNN:


Membership queries are trivial

                           (Equivalence queries are hard)


Use equivalence queries to induce the partitioning of the RNN state 
space

Use the partitioning to answer the equivalence queries



120 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach

?

a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?



aba
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Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?



aba
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Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?

RNN says:



aba
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Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?

RNN says:
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Iterative Approach
a

a

b

s0

s1

s2

s3
s4

Partitioning

L* ababb?
bab?

baa?
bba?

…

s0

s1

s2

s3s4

ε?
a?
b?

RNN says:
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Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* ababb?
bab?

baa?
bba?

…

ε?
a?
b?

RNN says:



aba
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Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?

RNN says:



aba

127 Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?

RNN says:



aba
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Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* bb?
bab?

baa?
bba?

…

ε?
a?
b?

aba

RNN says:
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Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* ε?
a?
b?

bb?
bab?

baa?
bba?

…

RNN says:

aba



aba
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Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* ε?
a?
b?

abb?

abab?

abba?
aaa?

aa?

…

bb?
bab?

baa?
bba?

…

RNN says:

aba



aba
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Iterative Approach
a

a

b

s0

s1

s2

s3
s4

s0

s1

s2

s3s4

Partitioning

L* ε?
a?
b?

abb?

abab?

abba?
aaa?

aa?

…

?
bb?

bab?
baa?

bba?
…

RNN says:

aba
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Results
1. Concise, Exact Models in Short Time:

RNN

Training

Extraction
0.2s

(4,400 samples to 100% accuracy)
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Results
1. Concise, Exact Models in Short Time:

RNN

Training

Extraction
0.2s

(4,400 samples to 100% accuracy)

Balanced Parentheses GRU
100% train set accuracy
BP up to depth 11, over alphabet: ()a-z

Counterexamples:

Comparison: 
Random sampling  
 counterexamples:

))                      (1.1s) 
(())                    (1.2s)

((()))                  (2.1s)

(((())))                (3.1s)

((((()))))              (3.8s)

(((((())))))            (4.4s)

((((((()))))))          (6.6s)

(((((((())))))))        (9.2s)

((((((((v())))))))     (10.7s)

((((((((a()z))))))))) (8.3s)

))                                     (0.4s) 
(()i)ma                            (32.6s)


2. Adversarial Examples (finding flaws)
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DFAs from RNNs

Goal: 
Concise (Meaningful) Model 

from Trained RNN DFA
PDFA
CFG
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DFAs from RNNs

Goal: 
Concise (Meaningful) Model 

from Trained RNN DFA
PDFA
CFG

Synthesising Context Free Grammars from Recurrent Neural Networks (Yellin, Weiss, TACAS 2021)
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CFGs from RNNs
Observation: L-star learning a CFG seems to have structured increases (example on BP)

etc…

Synthesising Context Free Grammars from Recurrent Neural Networks (Yellin, Weiss, TACAS 2021)
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CFGs from RNNs

Synthesising Context Free Grammars from Recurrent Neural Networks (Yellin, Weiss, TACAS 2021)

… …

Patterns
• Structure


• Entry

• Exit


• Connection Point(s)

• Composable


• Connection points are on 
compositions
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CFGs from RNNs

Synthesising Context Free Grammars from Recurrent Neural Networks (Yellin, Weiss, TACAS 2021)

… …

Patterns
• Structure


• Entry

• Exit


• Connection Point(s)

• Composable


• Connection points are on 
compositions

Rules
• Describe legal compositions


• Legal sequences of DFAs



139

CFGs from RNNs

Synthesising Context Free Grammars from Recurrent Neural Networks (Yellin, Weiss, TACAS 2021)

… …

Patterns
• Structure


• Entry

• Exit


• Connection Point(s)

• Composable


• Connection points are on 
compositions

Rules
• Describe legal compositions


• Legal sequences of DFAs

Result:
Algorithm to recover 

Pattern Rule Sets from a 
sequence of DFAs

Sequence can be obtained 
from L-star extraction

Some tolerance to noise!
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Counting 
LSTMs are counter machines, GRUs aren’t (ACL 2018)


RASP 
Finding a formalism to describe transformers (ICML 2021) 

DFAs from RNNs 
Applying L* to learn DFAs from RNNs (ICML 2018) 

   +        using the result for CFGs (TACAS 2021)

Neural Sequence Models: 
a Formal Lens



WDFAs from RNNs 
Adapting L* to the (noisy!) weighted case (Neurips 2019)


A Hierarchy of RNNs 
Comparing more RNN architectures, with different angles (ACL 2020)


141

Neural Sequence Models: 
a Formal Lens



Thanks!

142


