

Neural Sequence Models: **A Formal Lens**

Yoav Goldberg, Eran Yahav

Gail Weiss

Can you [MASK] me [MASK] salt?

Salut, comment ça va?

Bon appétit!

. . .

Can you [MASK] me [MASK] salt?

Salut, comment ça va?

Bon appétit!

...

Understanding the Black Box

Salut, comment ça va?

Bon appétit!

Understanding the Black Box

- Reliability (Verifiability)
- Intuition (biases, model selection) \bullet
- Knowledge extraction

- -

Salut, comment ça va?

Bon appétit!

Understanding the Black Box

- Reliability (Verifiability)
- Intuition (biases, model selection)
- Knowledge extraction
- Model design

Can you [MASK] me [MASK] salt?

Salut, comment ça va?

Bon appétit!

- -

Understanding the Black Box

- Reliability (Verifiability)
- Intuition (biases, model selection)
- Knowledge extraction
- Model design
- Just kinda cool

)

That was great!

Can you [MASK] me [MASK] salt?

Salut, comment ça va?

Bon appétit!

- - -

Understanding the Black Box

- Reliability (Verifiability)
- Intuition (biases, model selection)
- Knowledge extraction
- Model design
- Just kinda cool

Can you [MASK] me [MASK] salt?

Natural language is hard...

Salut, comment ça va?

Bon appétit!

Neural Sequence Models: **A Formal Lens**

aaabbb

Understanding the Black Box

- Reliability (Verifiability)
- Intuition (biases, model selection) \bullet
- Knowledge extraction
- Model design lacksquare
- Just kinda cool

PTPPPTFF

- -

Neural Sequence Models: a Formal Lens

Counting LSTMs are counter machines, GRUs aren't (ACL 2018)

RASP Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs Applying L* to learn DFAs from RNNs (ICML 2018) + using the result for CFGs (TACAS 2021)

Neural Sequence Models: a Formal Lens

Counting LSTMs are counter machines, GRUs aren't (ACL 2018)

RASP Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs Applying L* to learn DFAs from RNNs (ICML 2018) + using the result for CFGs (TACAS 2021)

$$h_t = f(x_t, h_{t-1})$$

$$= \sigma_h(W_h x_t + U_h h_{t-1} + b_h)$$

(Siegelmann and Sonntag, **1993**) RNNs are Turing Complete

RNNS

(Siegelmann and Sonntag, **1993**) **RNNs are Turing Complete**

(Hochreiter and Schmidhuber, **1997**) LSTMs

RNNS

(Siegelmann and Sonntag, **1993**) RNNs are Turing Complete

(Hochreiter and Schmidhuber, **1997**) **LSTMs**

RNNS

(Siegelmann and Sonntag, **1993**) **RNNs are Turing Complete**

1. Requires Infinite Precision: Uses stack(s), with zeros pushed using division: g = g/4 + 1/4In 32 bits, this reaches the limit after **15** pushes

2. Requires Infinite Time: And specifically, allows processing beyond reading input (Non standard use case!)

RNNS

Theoretical Power

RNN Turing Completeness Proof (1993):

(Siegelmann and Sonntag, **1993**) **RNNs are Turing Complete**

(Hochreiter and Schmidhuber, **1997**) LSTMs

RNNS

 b^h)

GRU

$$z_t = \sigma(W^z x_t + U^z h_{t-1} + b^z)$$

$$r_t = \sigma(W^r x_t + U^r h_{t-1} + b^r)$$

$$\tilde{h}_t = \tanh(W^h x_t + U^h (r_t \circ h_{t-1}) + b^r) + b_t = z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t$$

 $h_t = f(x_t, h_{t-1})$

LSTM

 $f_t = \sigma(W^f x_t + U^f h_{t-1} + b^f)$ $i_{t} = \sigma(W^{i}x_{t} + U^{i}h_{t-1} + b^{i})$ $o_t = \sigma(W^o x_t + U^o h_{t-1} + b^o)$ $\tilde{c}_{t} = \tanh(W^{c}x_{t} + U^{c}h_{t-1} + b^{c})$ $c_t = f_t \circ c_{t-1} + i_t \circ \tilde{c}_t$ $h_t = o_t \circ g(c_t)$

GRU

$$\begin{aligned} z_t &= \sigma(W^z x_t + U^z h_{t-1} + b^z) & \text{gates} \\ r_t &= \sigma(W^r x_t + U^r h_{t-1} + b^r) \\ \tilde{h}_t &= \tanh(W^h x_t + U^h (r_t \circ h_{t-1}) + b^h) \\ h_t &= z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t \\ \text{update functions} \end{aligned} \qquad \begin{aligned} f_t &= \sigma(W^f x_t + U^f h_{t-1} + b^f) \\ i_t &= \sigma(W^i x_t + U^i h_{t-1} + b^i) \\ o_t &= \sigma(W^o x_t + U^o h_{t-1} + b^o) \\ \tilde{c}_t &= \tanh(W^c x_t + U^c h_{t-1} + b^c) \\ c_t &= f_t \circ c_{t-1} + i_t \circ \tilde{c}_t \\ h_t &= o_t \circ g(c_t) \end{aligned}$$

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

 $z_t \in (0,1)$ $r_t \in (0,1)$ $\tilde{h}_t \in (-1,1)$ $h_t = z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t$

LSTM

GRU

 $z_t \in (0,1)$ $r_t \in (0,1)$ $\tilde{h}_t \in (-1,1)$ $h_t = z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t$

LSTM

 $h_t = o_t \circ g(c_t)$

Practical RNNs LSTM GRU

Activations on $a^{1000}b^{1000}$ **Trained** $a^n b^n$, (on positive examples up to length 100) GRU begins failing at length 39

Practical RNNs GRU LSTM

1.00 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1.0050 100 150 200 250 300 0

Activations on $a^{100}b^{100}c^{100}$ **Trained** $a^n b^n c^n$, (on positive examples up to length 100) GRU begins failing at length 9

Neural Sequence Models: a Formal Lens

Counting LSTMs are counter machines, GRUs aren't (ACL 2018)

RASP Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs Applying L* to learn DFAs from RNNs (ICML 2018) + using the result for CFGs (TACAS 2021)

Neural Sequence Models: a Formal Lens

Counting LSTMs are counter machines, GRUs aren't (ACL 2018)

RASP Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs Applying L* to learn DFAs from RNNs (ICML 2018) + using the result for CFGs (TACAS 2021)

RASP

а а S2 S1 С ... b b S4 S3 d

> How is the transformer... doing things?

(How) does it count?

(How) does it reason?

(What) does attention explain?

Transformers Output

Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin

Outputs (shifted right)

Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin

Encoder

Transformers

Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin

Encoder

Transformers

• Receive their entire input 'at once', processing all tokens in parallel

Transformers

- Receive their entire input 'at once', processing all tokens in parallel
- Have a fixed number of layers, such that the output of one is the input of the next

Computation "progresses" along network depth... not input length

Transformers

- Receive their entire input 'at once', processing all tokens in parallel
- Have a fixed number of layers, such that the output of one is the input of the next

Transformers

Layer input/outputs are "variables" of a transformer "program" The layers themselves are "operations"

tokens = positionwise_embeddings(input) indices = positionwise_indices(input) x =tokens+indices $y^1 = L_1(x)$ $y^2 = L_2(y^1)$ $= L_{I} (v^{L-1})$ v = v

RASP (Restricted Access Sequence Processing)

RASP (Restricted Access Sequence Processing)

- A transformer-encoder is a sequence to sequence function ("sequence operator", or, "**s-op**")
- Its layers apply operations to the sequences
- **RASP builds s-ops**, constrained to a transformer's inputs and possible operations
 - (The s-ops are the transformer abstractions!)

RASP base s-ops

The information before a transformer has done anything ("0 layer transformer")

tokens and indices are RASP built-ins:

RASP base s-ops

44

The information before a transformer has done anything ("0 layer transformer")

tokens and indices are RASP built-ins:

s-op: tokens Example: tokens(<mark>"hello"</mark>) = [h, e, l, l, o] (strings)

s-op: indices
Example: indices("hello") = [0, 1, 2, 3, 4] (ints)

The RASP REPL gives you

examples (until you ask it not to)

Okay, now what?

>> tokens; s-op: tokens Example: tokens("hello") = [h, e, l, l, o] (strings) >> indices; s-op: indices Example: indices("hello") = [0, 1, 2, 3, 4] (ints)

To know what operations RASP may have, we must inspect the transformer-encoder layers!

Transformer-Encoder Layer

Feed-Forward Sublayer

Feed-Forward Sublayer

>> indices+1; s-op: out Example: out("hello") >> tokens=="e" or tokens=="o"; s-op: out Example: out("hello")

Multilayer Feedforward Networks are Universal Approximators

KURT HORNIK

Technische Universität Wien

MAXWELL STINCHCOMBE AND HALBERT WHITE

University of California, San Diego

(Received 16 September 1988; revised and accepted 9 March 1989)

Abstract—This paper rigorously establishes that standard multilayer feedforward networks with as few as one hidden layer using arbitrary squashing functions are capable of approximating any Borel measurable function from one finite dimensional space to another to any desired degree of accuracy, provided sufficiently many hidden units are available. In this sense, multilayer feedforward networks are a class of universal approximators.

Example: out("hello") = [1, 2, 3, 4, 5] (ints) =="e" or tokens=="o";

Example: out("hello") = [F, T, F, F, T] (bools)


```
>> tokens;
     s-op: tokens
         Example: tokens("hello") = [h, e, l, l, o] (strings)
>> indices;
     s-op: indices
         Example: indices("hello") = [0, 1, 2, 3, 4] (ints)
>> indices+1;
     s-op: out
         Example: out("hello") = [1, 2, 3, 4, 5] (ints)
>> tokens=="e" or tokens=="o";
     s-op: out
         Example: out("hello") = [F, T, F, F, T] (bools)
```

So far

Are we all-powerful (well, transformer-powerful) yet?

Attention Sublayer

Background - Multi Head Attention

Starting from single-head attention...

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

input

scores

scores

scores

So, how do we present an attention head?

Self Attention (Single Head)

Single Head: Scoring \leftrightarrow Selecting

Decision: RASP abstracts to binary select/don't select decisions

sel = select([2,0,0],[0,1,2],==)

200 $\mathbf{O} \mathbf{F} \mathbf{T} \mathbf{T}$ **1** F F F 2 T F F

Decision: RASP abstracts to binary select/don't select decisions

sel = select([2,0,0],[0,1,2],==) FFF 2 T F F

Decision: RASP abstracts to binary select/don't select decisions

Decision: RASP abstracts to binary select/don't select decisions

sel = select([2,0,0],[0,1,2],==)

200 $\mathbf{O} \mathbf{F} \mathbf{T} \mathbf{T}$ **1** F F F 2 T F F

Decision: RASP abstracts to binary select/don't select decisions

sel = select([2,0,0],[0,1,2],==)

Decision: RASP abstracts to binary select/don't select decisions

sel = select([2,0,0],[0,1,2],==)

200 2 T F F

Decision: RASP abstracts to binary select/don't select decisions

sel = select([2,0,0],[0,1,2],==)

Decision: RASP abstracts to binary select/don't select decisions

sel = select([2,0,0],[0,1,2],==)

200 **O F T T** 2 T F F

Another example:

sel2 = select([2,0,0],[0,1,2] 200 ΟΤΤΤ **1 T** F F **2 T** F F

prevs = select([0,1,2],[0,1,2],<=)

0 1 0 **0 T F F 1 T T** F 2 T T T

prevs = select([0,1,2],[0,1,2],<=)

0 1 2 **0 T F F 1 T T** F

$$(1, 0, 0, ...) k_1$$

 $(0, 1, 0, ...) k_2$
 $(0, 0, 1, ...) k_3$

prevs = select([0,1,2],[0,1,2],<=)

0 1 2 **0 T F F 1 T T** F

$$(1, 0, 0, ...) k_1$$

 $(0, 1, 0, ...) k_2$
 $(0, 0, 1, ...) k_3$

$$(1, 0, 0, ...) q_1$$

 $(1, 1, 0, ...) q_2$
 $(1, 1, 1, ...) q_3$

Single Head: Weighted Average \leftrightarrow Aggregation

new=aggregate(sel, [1,2,4])

124 F T T 124 => 3F F F 124 => 0 => [3,0,1]T F F 124 => 1

Single Head: Weighted Average \leftrightarrow Aggregation

Single Head: Weighted Average \leftrightarrow Aggregation

Single Head: Weighted Average \leftrightarrow Aggregation

new=aggregate(sel, [1,2,4])

124 F T T 124 => 3F F F 124 => 0 => [3,0,1]T F F 124 => 1

Symbolic language + no averaging when only one position selected allows (for example):

reverse=aggregate(flip, [A,B,C])

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Great! Now do multi-headed attention

The multi-headed attention lets one layer do multiple single head operations

We do not need 'new' RASP operations to describe it!

(We will just let the RASP compiler know it can place multiple heads on the same layer)

Transformer-Encoder Layer

RASP (Restricted Access Sequence Processing)

Initial Sequences

>>	tokens; s-op: tokens
	Example: tokens("hello") = [h, e, l, l, o] (string
>>	indices;
	s-op: indices
	Example: indices("hello") = [0, 1, 2, 3, 4] (ints)

Selectors, and aggregate

Elementwise application of atomic operations


```
>> indices+1;
     s-op: out
         Example: out("hello") = [1, 2, 3, 4, 5] (ints)
>> tokens=="e" or tokens=="o";
     s-op: out
         Example: out("hello") = [F, T, F, F, T] (bools)
```

```
>> flip = select(length-indices-1,indices,==);
     selector: flip
         Example:
                             hello
                         h
                         е
>> reverse = aggregate(flip,tokens);
     s-op: reverse
         Example: reverse("hello") = [o, l, l, e, h]
```


Extra Sequences length; >> s-op: length Example: length("hello") = [5]*5 (ints)

Extra Sequences

length; >> s-op: length Example: length("hello") = [5]*5 (ints)

Selector Compositions

<pre>>> select(indices,3,==) or select(indices,indices,<=); selector: out Example:</pre>
hello
h 1 1
e 1 1 1
ι 1 1 1 1
ι 1 1 1 1
o 1 1 1 1 1

Extra Sequences

length; >> s-op: length Example: length("hello") = [5]*5 (ints)

Selector Compositions

<pre>>> select(indices,3,==) or select(indices,indices,<=); selector: out Example:</pre>
hello
h 1 1
e 1 1 1
l 1 1 1 1
l 1 1 1 1
o 1 1 1 1 1

Functions

Extra Sequences

length; >> s-op: length Example: length("hello") = [5]*5 (ints)

Selector Compositions

<pre>>> select(indices,3,==) or select(indices,indices,<=); selector: out Example:</pre>
hello
h 1 1
e 1 1 1
l 1 1 1 1
l 1 1 1 1
o 1 1 1 1 1

Functions

Extra Sequences length; >> s-op: length Example: length("hello") = [5]*5 (ints) **Selector Compositions**


```
>> full_s = select(1,1,==);
     selector: full_s
         Example:
                             hello
                         h
                             1 1 1
                                   1 1
                         е
                             1 1 1
                             1 1 1
                                   1 1
                         0
                             1 1 1 1 1
```



```
>> full_s = select(1,1,==);
     selector: full_s
         Example:
                             hello
                         h
                              1 1 1
                                   1 1
                         е
                                    1 1
                               1
                                 1
                                   1 1
                         0
                               1 1
                            indicator(indices==0)
```



```
>> full_s = select(1,1,==);
     selector: full_s
         Example:
                             hello
                         h
                             1 1 1
                         е
                         0
  frac_0=aggregate(full_s,indicator(indices==0));
>>
     s-op: frac_0
         Example: frac_0("hello") = [0.2]*5 (floats)
```



```
>> full_s = select(1,1,==);
     selector: full_s
         Example:
                             hello
                         h
                             1 1 1
                                   1 1
                         е
                                 1
                         0
  frac_0=aggregate(full_s,indicator(indices==0));
>>
     s-op: frac_0
         Example: frac_0("hello") = [0.2]*5 (floats)
> round(1/frac_0);
     s-op: out
         Example: out("hello") = [5]*5 (ints)
```



```
>> full_s = select(1,1,==);
     selector: full_s
         Example:
                             hello
                         h
                             1 1 1
                         е
                         0
> frac_0=aggregate(full_s,indicator(indices==0));
     s-op: frac_0
         Example: frac_0("hello") = [0.2]*5 (floats)
> round(1/frac_0);
     s-op: out
         Example: out("hello") = [5]*5 (ints)
```


>> flip = select(length-indices-1, indices, ==); selector: flip Example: h | e | l | 1 >> reverse = aggregate(flip,tokens); s-op: reverse Example: reverse("hello") = [o, l, l, e, h] (strings)

RASP expects 2 layers for arbitrary-length reverse

```
hello
```


[>> draw(reverse,"abcdeabcde")

RASP expects 2 layers for arbitrary-length reverse

[>> draw(reverse,"abcdeabcde")

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:

2 layers: **99.6**% accuracy after 20 epochs 1 layer: **39.6**% accuracy after 50 epochs

Even with compensation for number of heads and parameters!

[>> draw(reverse,"abcdeabcde")

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:

2 layers: **99.6**% accuracy after 20 epochs 1 layer: **39.6**% accuracy after 50 epochs

Even with compensation for number of heads and parameters!

Bonus: the 2 layer transformer's attention patterns:

Thinking Like Transformers (Weiss, Goldberg, Yahav, ICML 2021)

Example 2: *histogram* (assuming BOS)

in place histogram, with BOS - examples:

 $[\S,a,a,a,b] \rightarrow [0,3,3,3,1]$ [§,a,b,a,c] -> [0,2,1,2,1] $[\S,a,b,c,c] \rightarrow [0,1,1,2,2]$

Example 2: *histogram* (assuming BOS)

in place histogram, with BOS - examples:

 $[\S,a,a,a,b] \rightarrow [0,3,3,3,1]$ [§,a,b,a,c] -> [0,2,1,2,1] $[\S,a,b,c,c] \rightarrow [0,1,1,2,2]$

Example 2: *histogram* (assuming BOS)

RASP analysis:

- Just one attention head
- It focuses on:
 - 1. All positions with same token, and:
 - 2. Position 0 (regardless of content)

Example 2: *histogram* (assuming BOS)

Selector pattern vs trained transformer's attention for same input sequence:

RASP analysis:

- Just one attention head
- It focuses on:
 - 1. All positions with same token, and:
 - 2. Position 0 (regardless of content)

Example 2: *histogram* (assuming BOS)

Selector pattern vs trained transformer's attention for same input sequence:

RASP analysis:

- Just one attention head
- It focuses on:
 - 1. All positions with same token, and:
 - 2. Position 0 (regardless of content)

Neural Sequence Models: a Formal Lens

Counting LSTMs are counter machines, GRUs aren't (ACL 2018)

RASP Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs Applying L* to learn DFAs from RNNs (ICML 2018) + using the result for CFGs (тасаs 2021)

DFAs from RNNs

Concise (Meaningful) Model from Trained RNN

Previous Approaches

- 1. **Partition** RNN state space

2. Explore using **pruned BFS** or transition sampling

e.g.: Omlin and Giles (1996), Cechin et al. (2003)

Previous Approaches

- **1. Too coarse:** not representative

Impractical!

2. Too fine: very large: slow & memory consuming extraction

e.g.: Omlin and Giles (1996), Cechin et al. (2003)

L* (Angluin, 1987)

An exact learning algorithm for DFAs

Learns using:

- Membership Queries (request to label input sequence) and
- Equivalence Queries (request to accept/reject DFA)

Creates hypothesis DFA and improves it until accepted by teacher

Apply L* to RNN: **Membership queries** are trivial

space Use the partitioning to answer the equivalence queries

Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples (Weiss, Goldberg, Yahav, ICML 2018)

Iterative Approach

(Equivalence queries are hard)

Use equivalence queries to induce the partitioning of the RNN state

Results

1. Concise, Exact Models in Short Time:

132

Results

1. Concise, Exact Models in Short Time:

133

2. Adversarial Examples (finding flaws)

Balanced Parentheses GRU 100% train set accuracy BP up to depth 11, over alphabet: ()a-z

Counterexamples:

	(1.1s)
(())	(1.2s)
((()))	(2.1s)
(((())))	(3.1s)
((((()))))	(3.8s)
(((((())))))	(4.4s)
((((((()))))))	(6.6s)
(((((((())))))))	(9.2s)
((((((((v())))))))	(10.7s)
((((((((a()z)))))))))	(8.3s)

Comparison: Random sampling counterexamples:

(0.4s)

(32.6s)

)) (()i)ma

DFAs from RNNs

Concise (Meaningful) Model from Trained RNN

DFAs from RNNs

Concise (Meaningful) Model from Trained RNN

Observation: L-star learning a CFG seems to have structured increases (example on BP)

. . .

Patterns

- Structure
 - Entry
 - Exit
- Connection Point(s)
- Composable

Synthesising Context Free Grammars from Recurrent Neural Networks (Yellin, Weiss, TACAS 2021)

. . .

Patterns

- Structure
 - Entry
 - Exit
- Connection Point(s)
- Composable

Rules

- Describe legal compositions
 - Legal sequences of DFAs

Synthesising Context Free Grammars from Recurrent Neural Networks (Yellin, Weiss, TACAS 2021)

. . .

Patterns

- Structure
 - Entry
 - Exit
- Connection Point(s)
- Composable

Rules

- Describe legal compositions \bullet
 - Legal sequences of DFAs

Result:

Algorithm to recover Pattern Rule Sets from a sequence of DFAs

Sequence can be obtained from L-star extraction

Some tolerance to noise!

Neural Sequence Models: a Formal Lens

Counting LSTMs are counter machines, GRUs aren't (ACL 2018)

RASP Finding a formalism to describe transformers (ICML 2021)

DFAs from RNNs

Applying L* to learn DFAs from RNNs (ICML 2018) 4 = 4 using the result for CFGs (TACAS 2021)

Neural Sequence Models: a Formal Lens

WDFAs from RNNs

A Hierarchy of RNNs Comparing more RNN archi

Adapting L* to the (noisy!) weighted case (Neurips 2019)

Comparing more RNN architectures, with different angles (ACL 2020)

Thanks!

