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Abstract

In recent years, there has been significant interest in the use of neural networks for
processing sequential data, in particular using recurrent neural networks (RNNs) or
transformers. These neural networks—highly parameterised, differentiable functions—
are trained on large sets of input-output examples from a target concept, and boast
strong results on many sequence processing tasks. They are used for everything from
speech recognition and automatic translation to natural language generation, algorith-
mic trading, and more. But while their results are impressive, their representation is
abstruse, making it hard to know what they have actually learned.

The work in this dissertation focuses primarily on the interpretation of such net-
works, which we refer to as neural sequence models. In particular, we present methods
for the extraction of interpretable rules from trained models, and provide analyses of
different architectures to better understand them.

For RNNs, there is a natural family of rules to focus on: RNNs have a clear analogue
in deterministic finite automata (DFAs), and many works attempt to recover DFAs from
RNNs for this reason. We propose a new method for extracting DFAs from RNNs, using
the active DFA-learning algorithm L∗ which had not been applied to RNNs before. To
do this, we show how to efficiently approximate a response to L∗’s equivalence queries
by modifying an existing algorithm for extracting DFAs from RNNs, ultimately playing
the two algorithms off of each other in a successful iterative routine.

Expanding to the weighted case, we then design a weighted L∗ variant. Here, the
challenge is introducing a tolerance for minor differences between classifications into
the L∗ algorithm, such that it may be efficiently applied to a (noisy) trained RNN.

Our work on extraction from RNNs leads us to interesting observations on their be-
haviour. We find that one popular RNN variant—the LSTM—can successfully maintain
a counter its state, while another—the GRU—cannot. We elaborate on the mechanisms
behind these behaviours in our work.

Finally, in order to continue this line of research for transformers, we must find a
natural analogue that will help us intuit about them in the same way that automata
helped us understand and extract from RNNs. In this thesis we will propose such
a model, presenting the symbolic programming language RASP (Restricted Access
Sequence Processing).
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Notation and Abbreviations

BOS Beginning of Sequence (A token marking the beginning of a
sequence)

114

DFA Deterministic Finite Automaton (A finite state machine that
processes input tokens one at a time, with each token pro-
gressing it from one state to the next according to a deter-
ministic transition function)

5, 22

EOS End of Sequence (A token marking the end of a sequence) 14
LM Language Model (A model that defines a distribution over

all possible finite sequences from an alphabet)
21

NSM Neural Sequence Model (A neural network adapted to pro-
cess variable-length sequences of input vectors)

11

PDFA Probabilistic Deterministic Finite Automaton (A WDFA in
which the weights on the transitions are normalised to define
a next-token distribution over each state, such that it can be
used as an (autoregressive) LM over a given alphabet)

22

RNN Recurrent Neural Network (A neural sequence model that
processes input sequences one vector at a time, maintaining
in a single (or more) hidden vector an internal ‘state’ as it
goes)

24

WDFA Weighted Deterministic Finite Automaton (A DFA with an
additional weight defined over each transition, such that the
product of transitions a sequence takes in the DFA can be
used to assign a weight to that sequence)

22
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Chapter 1

The Story
Like the introduction, but more fun.

In 1895 there were only 2 cars in the
entire state of Ohio, yet they still
ended up crashing into each other.

Anonymous, Online
Also, a lie (on our internet!?)

In the very beginning, long before there was even a research proposal, Eran and I
just wanted to see how a neural net could help with program synthesis. This goal (and
group) morphed quickly, but I will tire you with the story anyway.

We began with just DFAs: suppose some expert wants to encode some regular
language (e.g. by DFA). They understand their language well enough to label any
sample as being in or outside of the language (‘membership query’), and even know to
accept or (with some difficulty, and by way of counterexample) reject any automaton
someone proposes to describe this language, though they would really rather not write
such an automaton in full themselves. This expert would then, by definition, be a
minimally adequate teacher for Dana Angluin’s L∗ algorithm, a DFA learning algorithm
that I had just learned about for this exact purpose. L∗ learns DFAs by making constant
membership and equivalence queries to minimally adequate teachers, and would be a
perfect match for our hypothetical expert, if only the latter didn’t hate coming up with
counterexamples so much.1

This is where our neural net was to jump in: before revealing each equivalence
query to the expert, our neural net would help to generate extra membership queries,
queries whose true labels we hoped—by nebulous reasoning—were likely to contradict
those of the current proposed automaton. If the labels did indeed conflict with the
given automaton, then their labelling could be used to effectively reject it before it ever

1Making up counterexamples sucks, which is why, around the same time, Eran was also working
with Hila and Sharon on another method to avoid them—though their work deals with actual code
[PSY18].
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Figure 1.1: A sketch of our initial research project: a trained LSTM network acts as a
shield, protecting our expert from L∗’s difficult questions.

got to offending our expert’s sensibilities (Figure 1.1).

Specifically, our neural network was an RNN, tasked with learning the target lan-
guage alongside the L∗ algorithm by using the same samples that our expert was la-
belling anyway for L∗ . The idea was simply, at every equivalence query, to randomly
sample several sequences and compare their labels from the RNN with those from the
L∗ automaton, floating all disagreements to the expert for their true label. Yoav was
quickly enrolled to this effort: someone had to make sure I didn’t hurt myself on the
RNNs.

We played with this toy for maybe one month (I checked) before Eran had a “crazy
idea”: what if we tried to figure out what the RNN was learning instead? Yoav soon
told us this was actually a rather popular idea. He pointed us to several works on the
extraction of automata from RNNs, which begin—as far as I can tell—with the works
of Giles and colleagues, and of Watrous and Kuhn, though it is the former with which
I became more familiar.

In their 1992 paper, Giles and colleagues propose a method to extract a DFA from
a trained RNN, based on the reasonable assumption that “equivalent” state vectors in
the RNN are generally arranged into small, easily separable clusters. The algorithm
is straightforward: first, quantise the state space of the RNN, and treat each resulting
‘block’ of state vectors as a single (possibly unreachable) state in the extracted DFA.
Then, map the transitions between these cluster-states by transferring all those found
by a direct exploration of the RNN’s actual states, starting from its initial state and
continuing until all abstract cluster-states are either fully mapped or unreachable. If
the automaton doesn’t seem good enough—for example, it doesn’t agree with the RNN
on its training set—refine the quantisation, and start again.

We now had two straightforward, easy to implement algorithms for learning DFAs
(one from experts and one from RNNs), which is two more than I had known about a
month ago. Our first work is the result of smashing these into each other to create one
that is neither.
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This mix set a general direction for the rest of our work: we were going to pry open
the black box of neural networks, and we were going to do it with tools from formal
languages. We advanced our next goal to the extraction of weighted DFAs, which
brought a completely new challenge to the application of L∗: how could we apply it,
efficiently, to a model with potentially infinite different classifications? In an approach
eventually hailed as “not hacky” in reviewer 4’s post-rebuttal comments, we introduced
a noise tolerance for considering two classifications as equal, and adapted all of L∗ and
its guarantees to work around this fuzzy new situation.

Around this point I was also lucky enough to meet Danny Yellin, who wanted
to expand in the direction of context free grammars. Danny had read our L∗-based
extraction work, and noticed something interesting in the sequence of hypothesis DFAs
presented by L∗. Specifically, when L∗ was attempting to extract a DFA from an
RNN that had actually been trained on a simple context-free language, the differences
between its subsequent hypotheses seemed to repeat specific patterns relevant to the
language (see for example Figure 4.1). Danny suggested treating these DFAs as being
generated by a small set of DFA building rules, which we defined and refer to as Pattern
Rule Sets (PRSs). By sufficiently constraining the space of possible PRSs, we were able
to devise an algorithm for recovering a PRS from a given sequence of DFAs, and by
extension to recover simple context free grammars (which the PRSs can be converted
into) from trained RNNs [YW21].2

Meanwhile, merely working on extraction had actually directed us to a nice formal
observation on RNNs: the LSTM architecture (unlike the GRU) was able to count.
For me, this particular realisation was the serendipituous result of staring at debug
prints while training LSTMs and GRUs on some simple non-regular languages (that
turned out to be counting based), but I was not the first to see it: counting behaviour
had actually been observed in LSTMs long before [GS01]. What was interesting was
understanding why this was happening, and why it wasn’t happening in GRUs, which
required a familiarity with the exact inner workings of these RNNs. Luckily I had
this familiarity, and for this I would like to credit the wonderful blog posts of Andrej
Karpathy on RNNs [And15] and Christopher Olah on LSTMs [Chr15], the pytorch
documentation [PGC+17], and my complete inability to use other people’s code or
packages without worrying too much.

2This work is not a part of this thesis.
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We quickly published our explanation (along with a demonstration of the effect),
opening a parallel line for our research which has led to a somewhat different and very
enjoyable line of questioning: how can we use formal tasks to describe the potential
expressive power of different neural networks?

Within a year, William Merrill (then under the guidance of Robert Frank and
Dana Angluin!) formalised our results, introducing the much more rigorous concept
of saturated neural networks for such analyses [Mer19].3 We were lucky enough to
meet a short time after, which immediately began a collaboration to further analyse
the expressive power of different RNN variants, from more angles. Two years after
the paper on LSTMs and GRUs, William, our collaborators, and I published a formal
hierarchy of different RNN architectures, characterising the expressive power of several
RNN variants, differentiating them across two main axes, and even considering the
effects of pairing them with different final classifiers [MWG+20].4

All this time however, transformers had been growing in popularity, and it was
getting impossible to ignore them (or Eran and Yoav’s comments) any longer. This
time I used Alexander Rush’s excellent Annotated Transformer [Rus18] to get into the
details, after which I had to accept an unfortunate observation: these networks were
nothing like any of the formal models with which we were familiar.5 This meant that,
if we wanted to continue our work for transformers at all, we would have to begin with
finding a relevant symbolic model to work with.

This unsurprisingly turned out to be a massive task. It took a while to advance
from strange mathematical description to the general idea of a (loop-free) programming
language, which would allow both symbolic representations and reflect the bounded
depth of the transformer’s computation. Then there was the question of how much
control to give the user: the possible attention patterns advanced from a fixed finite set
to something user definable. We argued over whether to use numerical or binary scores
in the attention, agonised over how (if even possible) to make the attention-making
operation readable, let alone the aggregation, and quibbled over what different things
should be called at all (Figure 1.2).6 For a brief time, map-reduce terminology was
involved, but multimap-reduce-aggregate-average or whatever it all turns into when
considering the attention operation soon killed that dream.

3In the original work, William refers to this as the asymptotic assumption, but we have since moved
to saturation as the term (https://lambdaviking.com/post/saturated-networks).

4This work is also not a part of this thesis.
5I should note: several works have obtained results by comparisons with different circuit families!

But they do not show that transformers are like circuits so much as that they can be expressed by
them.

6When the transformer itself has no awareness of input order, does it really make sense to call its
abstraction a sequence operator?
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Figure 1.2: A key moment in designing RASP (Restricted Access Sequence Processing).

On one more exciting (and defining) evening, we figured out how to use the base
transformer operations to count (!) conditionally (!!) (i.e., count different things ac-
cording to the request of each position). From there it was just a quick ∼1 year journey
to finish everything up and publish our results.

At ICML 2021 we presented RASP, a programming language that defines, more or
less, the possible sequence operations computable with a transformer. RASP is hard
to absorb and was described as “Matlab, but made by Satan” by my ever-supportive
friend Omri Gilad,7 to which my only response is that the transformer is worse.

7See https://twitter.com/gail_w/status/1336080805454548994 for more such supportive com-
ments.
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Chapter 2

Introduction

The deep learning revolution! Since the advent of powerful, affordable GPUs,1 and
following a few notable successes on existing machine learning tasks,2 deep neural
networks have become the go-to model for almost every kind of task.

They can predict protein structures from amino acid sequences [JEP+21]. They can
accurately recognise objects in images (the leading models on the Imagenet [DDS+09]
leaderboard are neural network based), and generate beautiful new images from text
[RDN+22; RBL+22]. They can transcribe your speech [CZH+21], translate written text
(see [DCK20; YWC20] for surveys), answer questions (the SQuAD [RZLL16] leader-
board is dominated by deep neural nets), and even mimick your written speech in a
convincing manner [BMR+20]). They can play chess, go, and others better than you
[SHS+17]. They handle cars on the road, or at least aspire to [YLCT20]. And they
have even been accused of being “slightly conscious” [Sut22]—though never without an
ensuing debate.

But what fun is success on tasks without insight and understanding? And what
trust can we give a machine we don’t understand?

If we are going to learn anything from these fantastic models, and especially if we
are going to use them in safety-critical applications, we have to understand how they
are working. Obtaining this understanding—recognising their internal mechanisms
and strengths, and recovering interpretable rules from trained networks—will be the
primary focus of this work.

To keep the task manageable, we will restrict ourselves specifically to Neural Se-
quence Models (NSMs): neural networks that operate on variable-length sequences of
input vectors, and within these we will focus further on symbolic input sequences: se-
quences in which the individual input vectors are chosen from a finite set, representing
some finite input alphabet.

1Maybe space, time, and data was all deep neural networks ever really needed? Certainly [CMGS10]
revel in the power afforded them by the latest technology.

2AlexNet famously beat all of its (non-neural) competitors on the ImageNet task [DDS+09] in 2012
[KSH12], and further research on speech and image processing in the same year [HDY+12; LRM+12]
soon convinced huge industry players of the promise in the field.
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The majority of the work will focus on the Recurrent Neural Network [Elm90], an
NSM that processes input sequences one token at a time, maintaining a state as it
goes. In this focus we will consider its existing parallel to the well researched model
of Deterministic Finite Automata (DFAs) [CSM89], and exploit it both to recover
weighted and unweighted DFAs from RNNs, and to fully understand the effect of one
mechanism which we encounter in a popular RNN variant, the LSTM [HS97]. Finally
however, we will turn to the popular transformer architecture [VSP+17], which has
become the base of so many successful NSMs today. Unlike RNNs, transformers do
not process their input sequences one token at a time but rather all at once, and so we
need an entirely different kind of model to understand them. We will propose such a
model in the form of a programming language, which we dub RASP (Restricted Access
Sequence Processing), and present empirical results supporting their similarity.

2.1 Background

The main concepts explored in this work—automata, RNNs, and transformers—are
presented fully in Chapter 3. Still, we give a brief introduction to these concepts here.

2.1.1 DFAs, variants, and the L∗ Algorithm

DFAs

A plain deterministic finite automaton (DFA) is a finite state machine used to process
and classify sequences from a given finite alphabet Σ in a deterministic manner. The
machine classifies input sequences as follows: first, it starts in its single initial state q0.
Then, it reads the input sequence one token at a time, each time updating its state
according to its deterministic transition function δ, which defines the next state from
each current state and input token (effectively a lookup table). Once the sequence has
been read completely, it checks if its current state is accepting or rejecting, and this is
the classification of the sequence.

The set of sequences accepted by a DFA is the language defined by that DFA,
and the set of all languages that can be defined by a DFA is called the set of regular
languages.

DFA Variants

A weighted DFA (WDFA) is a DFA which also has a weight associated with each of its
transitions and states. In this case, the output of the WDFA on each input sequence
is not binary, but rather the product of the weights all the transitions taken in reading
the sequence (including repetitions) and the weight of the final state it reaches. If we
further require that at each state, the set of weights over its transitions and own weight
form a distribution, and that there are no cycles in the DFA with 0 weight assigned
to the states themselves, then the output of the WDFA forms a distribution over all
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possible finite sequences w ∈ Σ, and we refer to it as a probabilistic DFA (PDFA). For
a PDFA, we refer to the state- and outgoing transition- weights of each state as that
state’s next-token distribution.

Outside of weighting, DFAs can also be augmented by adding various memory
structures to them, and allowing them to react to and control these structures alongside
each transition. At the extreme, we have Turing machines: DFAs augmented with an
infinite read/write ‘tape’ of memory cells and a head that can move back and forth
along this tape.3 More weakly, we have k-counter machines: DFAs augmented with k

counters, which can only be controlled by resets, no-ops, or increases/decreases by one,
and ‘read’ by comparison to zero [FMR68].

Note. A k≥2-counter machine may be described as Turing complete—i.e., able to com-
pute any function that a Turing machine can—but this is only under a careful inter-
pretation of Turing completeness that allows the input and output sequences to be
appropriately encoded. When the inputs and outputs are not carefully encoded, there
are Turing computable functions which a k-counter machine cannot compute. For ex-
ample, for any input alphabet |Σ| ≥ 2, no k-counter machine can recognise the set of
palindromes of arbitrary length over Σ.

L∗

The L∗ algorithm [Ang87] is an algorithm for learning regular langauges from a mini-
mally adequate teacher, that is, an oracle that can answer any membership or equiva-
lence query about the language being learned. 1. membership queries are requests to
classify a sequence: is it in the target language? 2. equivalence queries are requests to
(informatively) classify a DFA: does it define the target language? And if not, what
is a sequence it misclassifies (a counterexample)? L∗ runs in polynomial time in the
size of its final DFA, the alphabet, and the longest counterexample it receives. It keeps
the responses to all of its membership queries in an observation table and generates an
equivalence query every time it can find a DFA consistent with all of the observations
it has made thus far.

2.1.2 Neural Sequence Models

A neural network is a highly parameterised differentiable function g : Rdin → Rdout , and
a neural sequence model is a neural network that has been adapted to (meaningfully)
handle a variable-length sequence of input vectors, x ∈ (Rdin)∗. This adaptation can
be either by special application of its immediate function (as in the case of RNNs), or
direct adaptation of its internal implementation (as in the case of Transformers).

3Turing machines use and control this head and tape at each state transition by reading the current
cell’s value (which is treated as another component of their current state), deciding how (if at all) the
head should move next, and what new value should be written in the current cell before moving.
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RNNs

Recurrent Neural Networks (RNNs) are NSMs built on a simple neural network, specif-
ically, a neural network consisting of an ‘initial state’ h0 ∈ Rdstate and update function
g : Rdstate × Rdin → Rdstate as follows: g takes two vectors ht and xt, interpreted as
current state and current input token, and returns a single new vector which is inter-
preted as the next state: g(ht, xt) = ht+1. These networks (g, h0) are applied to input
sequences similarly to DFAs, with the main difference between the models being that
the states and input tokens of RNNs are presented as real-valued vectors as opposed
to symbols from finite sets [CSM89].

By pairing an RNN with a state classification function f : Rdstate → C we can treat it
as a classifier. If C = {Acc, Rej} then g, h0, f define a language over the input alphabet
Σ similarly to a DFA, and we call the trio an RNN-acceptor. If C contains tuples
(w1, ..., w|Σ|, wEOS) of weights for each input token and one additional End of Sequence
(EOS) token, this can be interpreted as a weight for each input token transition and
each state (by the EOS token), defining a weight for each input sequence similarly to
a weighted DFA. As in WDFAs, if we further require that C contain only distributions
rather than sets of weights—and make sure that the trio (g, h0, f) avoids loops with
zero EOS weight—then (g, h0, f) defines a distribution over all finite sequences over Σ,
and we call it a language model-RNN (LM-RNN). In LM-RNNs as in PDFAs, we refer
to the tuple f(h) = (w1, ..., w|Σ|, wEOS) of each state h as its next-token distribution.

The actual functions g and f can take on many forms, including among them the
popular LSTM [HS97] and GRU [CvMBB14; CGCB14b] architectures. Our DFA- and
WDFA- extraction algorithms are agnostic to these differences (Chapters 4 and 6), but
the actual expressive power of the networks is not, and we remark on this in a separate
work Chapter 5 and a later collaboration [MWG+20].

Transformers

Note. A transformer is a combination of two very similar networks, a transformer-
encoder and a transformer-decoder, where the encoder is used to process input se-
quences and the decoder to autoregressively generate new ones, possibly with the help
of processed information it got from an encoder. In both cases, the networks themselves
are length-preserving functions f : (Rd)∗ → (Rd)∗, meaning that |f(x)| = |x| for every
input sequence x ∈ (Rd)∗. In our work we consider only the transformer-encoder, and
refer to it simply from here on as a transformer for convenience.

Like RNNs, transformers [VSP+17] are neural networks adapted to process se-
quences, but their adaptation is internal, and their overall behaviour is much more
complicated and parallelised. Specifically, while an RNN processes input sequences
one token (input vector) at a time, a transformer processes all of its input tokens (vec-
tors) in parallel, recombining them differently at each position according to the values
in that position. While the full description is given in Section 3.4, we try to give a brief
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overview of their behaviour here.
Each transformer (encoder) is composed of a finite number L of layers (with the

input going into the bottom layer, and then the output of each layer feeding into the
next layer), each of which can each be divided roughly into two main sublayers: a
length-preserving feed-forward sublayer F : (Rd)∗ → (Rd)∗ and a length-preserving
self-attention sublayer a : (Rd)∗ → (Rd)∗. (In a full transformer, the decoder will
also have an encoder-attention sublayer, which it uses to gather information from the
encoder.)

The feed-forward sublayers are straightforward: each effectively consists of a single
function f : Rd → Rd that is applied independently to each input vector xi ∈ Rd passed
to the sublayer. The implementation of this function (a 2-layer feed-forward network)
is powerful for local manipulations [HSW89a], but the independent applications mean
that the sublayer itself cannot meaningfully process the overall input sequnce, e.g., it
cannot even check if there were two appearances of the same token.

The attention sublayers are the only part of the transformer that process the input
sequence x ∈ (Rd)∗ as a whole. They consist of attention heads, which define functions
by which the information from all the input vectors will be mixed and shared to each
output vector. Specifically, each attention head computes an attention matrix over
the positions—a weight wi,j for every ordered pair of positions i, j ∈ [|x|]—-and then
computes weighted averages of the information from its input vectors, for each output
position i according to its weights wi,j over the input positions j. The exact details are
presented in Section 3.4.

Embeddings Both the feed-forward and attention sublayers of the transformer are
permutation equivariant, meaning that the only effect of permuting the vectors in a
transformer’s input sequence is to identically permute the vectors in its output sequence.
Hence to differentiate between input sequences such as “apples are fruits” and “fruits are
apples”, each input vector passed to a transformer actually encodes a (token,position)
pair,4 obtained by summing a token and a positional embedding for that pair.

2.2 Overview

This thesis covers four papers: two on extracting DFAs from RNNs (one for plain
DFAs from RNN-acceptors [WGY18a; WGY22]), and one for PDFAs from LM-RNNs
[WGY19]), and two on analysing NSM architectures, specifically: one exploring a tan-
gible difference between two popular RNN architectures [WGY18b], and one propos-
ing a framework for intuiting about the more complicated transformer architecture
[WGY21]. These works inspired some collaborations which are not included in this
thesis: in [YW21] we build on our DFA extraction work to recover some simple context

4For transformer decoders, due to a subtle difference in their attention sublayer, this may not
actually be necessary [HRP+22].
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free grammars from RNNs, and in [MWG+20] we consider further differences between
a wider array of RNN architectures, exploring what kind of DFA variations each RNN
architecture is most like, and even how the strength of the classification functions f

paired with them can affect their expressive power.

2.2.1 Extracting DFAs from RNNs

In Chapter 4, we present a method for recovering DFAs from trained RNN-acceptors.
Given the close analogue of DFAs to RNNs [CSM89], this task has been extensively
explored: see e.g. [GMC+92; OG96; CSS03; MS17] for examples, or [Jac05; WZO+17]
for surveys. We differentiate from existing works by approaching the task with exact
learning as opposed to state space clustering, employing the L∗ DFA learning algorithm
(described briefly above and more fully in Subsection 3.2.1) to recover a DFA from the
RNN.

Specifically, we take the RNN-acceptor R from which we wish to extract a DFA, and
designate it as teacher for the L∗ algorithm. R can be used trivially answer membership
queries, but equivalence queries—in which we must determine whether a given DFA is
equivalent to R—are more challenging. As this problem is likely to be intractable, we
use an approximation. One approach would be random sampling; however, should R

and A be similar, this may take time.5

Instead, we answer equivalence queries with the help of abstractions of the RNNs,
based on the general partition-mapping method used in previous works (described fully
in Subsection 3.3.1). For our case, we define a custom, gradually refined partitioning
p. We avoid this partitioning becoming unmanageably large—a risk in some previous
methods—by only creating a single new cluster at every refinement, and only refining
it when proven insufficient to describe the RNN.

The partitioning-based abstraction Ap and the L∗ DFA A act as two hypotheses
for the RNN’s ground truth, and the extraction does not terminate until the two are
at least equivalent to each other. Whenever the two disagree on a sample w, we find
its true classification in R, obtaining through this either a counterexample to A or a
refinement to the partitioning p.

We show our method to efficiently and correctly recover many DFAs from RNNs
trained to classify regular languages, expand easily to languages with minimal DFAs
that are larger than any recovered in previous work, and even experiment a little with
non-regular languages, obtaining interesting regular approximations of our true targets.

This work was presented initially in ICML 2018 [WGY18a], and later in an ex-
tended format in the Springer Machine Learning Journal, in the 2022 Special Edition
on Grammatical Inference [WGY22].

5A later work has since considered this approach, presenting the algorithm alongside a relevant
PAC analysis [MY18]
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2.2.2 LSTMs can count, GRUs can’t

In our DFA extraction work, we work with the popular RNN architectures LSTM
[HS97] and GRU [CvMBB14; CGCB14b], and as a by-product of this become familiar
with their specific implementations. Meanwhile, through experiments on a non-regular
synthetic language which we refer to as balanced parentheses (BP, a minor variant
of the dyck-1 language), we realise we are challenging the neural networks to count:
recognising BP language requires following how many open vs closed parentheses there
are at every point in the input sequence, and verifying that 1. the balance never drops
below zero, and 2. it reaches exactly zero at the end.

Meditating on these pieces of information—the internal architecture implementa-
tions, and the tasks we are challenging them with—leads us to a main observation as
follows: the LSTM architecture is suited to count, while the GRU architecture is not.

While we leave the exact details Chapter 5, the overall explanation is as follows: part
of the LSTM state is composed of an unbounded vector c ∈ Rdstate , which is updated
at each input token by an independently gated addition between its current values and
new candidate values—allowing straightforward implementation of increase/decrease
and reset mechanisms on each value in c. Further, the activations used in creating
these gates and candidate values are such that the values {0, 1} (for gates) and {−1, 1}
(for candidate values) are easy to approximate—meaning, they do not require carefully
balanced weights—which further accomodates the implementation of the keep/reset
and increase/decrease/leave mechanisms needed to implement counter machines.

In contrast, the GRU state is composed entirely of a bounded vector h ∈ [−1, 1]dstate ,
which is updated at each input token by an interpolation between its current values
and similarly bounded new candidate values. Bounded in this way, the GRU has no
opportunity to directly implement any counter dimension in h, and ultimately struggles
to implement any counting mechanism at all.

While we are not the first to observe the LSTMs using counting to successfully
perform counting-based tasks (see for example [GS01]), we are the first to categorise
their power as that of counter machines, and to explain exactly how the counting
mechanism is achieved. In our paper, which was presented in ACL 2018 [WGY18b], we
expand this analysis slightly to cover a couple more architectures, and present a small
set of experiments on counting tasks which clearly display learned counting dimensions
in the LSTM, but none in the GRU.

Our results have since both been replicated on more complex tasks [SGBS19] and
inspired further works analysing the practical power of different neural architectures
(see eg [Mer19; MWG+20]).

2.2.3 Extracting PDFAs (and WDFAs) from RNNs

Having extracted DFAs from RNN-acceptors, we turn to extracting interpretable rules
from LM-RNNs, which define a distribution over all possible input sequences.
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At this point, much work has been done on learning weighted finite automata
(WFAs)—a non-deterministic variant of WDFAs, in which each (state,token) pair may
transition to multiple different new states—from observations. In particular, the spec-
tral learning method has been introduced to construct WFAs consistent with large
tables (“Hankel Matrices”) of observations from a target classifier [BCLQ14], and ap-
plied to LM-RNNs by sampling their relevant Hankel Matrices [AEG18; OWSH20].

As WFAs are not analogous to RNNs in the same way as DFAs (RNNs are deter-
ministic machines), we prefer to recover DFAs from RNNs as before. This time, we
will need a probabilistic DFA to reflect the LM-RNN behaviour. We return to the L∗

algorithm, which we can modify easily to the multi-class setting and apply to PDFAs
by treating each state’s next-token distribution as its classification. Unfortunately, this
approach creates an extremely large number of potential state classifications C, and
applying the simple modification to LM-RNNs—which are unlikely to return identical
next-token distributions for any two different states h1 6= h2—simply cannot return
anything much more meaningful than a full mapping of the RNN’s states.

Modifying L∗ more carefully, we introduce a tolerance for the difference between
two different next-token distributions which we will still consider identical. This has
ramifications for the guarantees of the algorithm and even the definitions of closedness
and consistency which L∗ follows in its computations (described in Subsection 3.2.1).
We follow through the effects of these changes, prove the relevant new guarantees on
the resulting modified algorithm, and evaluate it on RNNs trained on several language
modelling tasks. We also compare our extracted PDFAs to n-grams and WFAs which
we recover from the same RNNs.

While our motivation was the recovery of PDFAs, our algorithm does not rely on the
classifications of the states being distributions, and is ultimately suitable for learning
any weighted DFAs (WDFAs).

This work was presented in NeurIPS 2019 [WGY19].

2.2.4 Finding an Analogue for Transformers

Having successfully extracted from and analysed differences in RNNs, we wish to
achieve the same for the more modern and extremely powerful transformer architecture.
Immediately we hit a fundamental obstacle: transformers do not have a well researched
analogue in the same way that RNNs have automata. In fact, it would seem they have
no analogue in existing models at all!6

6Some recent works have shown how, under certain simplifying assumptions, transformers can
be represented using different types of circuit families [HAF22; MSS22]. These results provide an
interesting upper bound on transformer expressive powers! But they do not suggest a parallel between
transformers and circuits, and in particular do not provide a framework for reasoning about a trained
transformer’s behaviour, such as the attention patterns and positionwise computations it might use
in solving a task. In fact, while many works analyse the expressive powers of transformers (see e.g.
[YBR+20; PBM21; Hah20] for a small sample), they are all are forced to do so without the framework
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In this work, we propose such a computational model for transformers, with the
help of the programming language RASP (Restricted Access Sequence Processing.7)
The main intuition in using a programming language is as follows: first, we assume
that the information input to each transformer layer ℓl can be kept available for each
deeper layer ℓj , j < l, similar to how variables in code persist after creation. And
second, we recognise that the computation depth of a transformers output—that is,
the longest path of dependencies from an output value to an input value anywhere in
the sequence—is bounded,8 much like the depth of a computer program described by
a short sequence of basic operations.

If so, all that remains is to define the set of legal operations that such a computer
program may contain, and the inputs it receives.

1. The inputs are straightforward: they are the sequences of individual tokens and
positions encoded in the transformers input embeddings, which we maintain sep-
arately for clarity: one sequence of individual tokens, and one sequence of indi-
vidual positions.

2. The feed-forward sublayers are also straightforward: these are operations which
map a single atomic operation to each value in a sequence, for example adding 1
to the sequence [0, 1, 2] to yield the sequence [1, 2, 3].

3. The attention sublayers are more complicated, and abstracted into two steps:
first an attention pattern is created, and then that pattern is used to average (or
aggregate) the values of a given sequence (one of the existing variables) into a
new sequence, using a different weighting for each output position in accordance
with the attention pattern. To keep things simple, we only create binary attention
patterns, which we refer to instead as selection patterns. To avoid code repetition,
selection patterns in RASP are given the same standing as sequences, meaning
they can be reused in multiple aggregation operations.

Finally, to avoid having to write each new transformer abstraction as a function
explicitly receiving the input and position sequences, we bake this behaviour directly
into RASP:

1. Instead of manipulating sequences and selection patterns, RASP actually manip-
ulates sequence-to-sequence and sequence-to-selection-pattern functions, which we
refer to as sequence operators (s-ops) and selectors respectively, and

2. The input and position sequences (embeddings) are provided in the form of two
base s-ops: tokens and indices, which describe the initial conversion of each

of an intuitively related computational model!
7So named to reflect the fact that it is designed to manipulate input sequences, but cannot do so

arbitrarily
8Specifically in O(L) where L is the number of transformer layers
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input sequence to its individual tokens and token positions, respectively. For
example: tokens("hi")=["h","i"], and indices("hi")=[0,1].

Manipulating functions as opposed to sequences and selection patterns directly
means that the actual operations in RASP—select, aggregate, and all position-
wise manipulations—do not apply directly to input sequences, but rather to s-ops. In
particular, each RASP operation actually creates a composition of its input s-op (or
s-ops) with the underlying operation being described: the line a=v+1 in RASP creates
a new s-op a whose output is defined simply: for each input sequence x and output
position i ∈ [|x|], a(x)i ≜v(x)i + 1.

To clarify: the RASP s-ops are to transformers what DFAs are to RNNs, and the
RASP language itself is actually how we build them: the set of rules which defines the
set of all possible RASP s-ops. In particular, while RASP could be Turing complete,
the same is not true for the set of all possible s-ops which it can generate.

The RASP s-ops are not necessarily a perfect analogue to transformers: it is possible
that they both under- and over- approximate their abilities in different aspects. Still,
they provide an intuitive framework for reasoning about how a transformer might make
use of its intermediate embeddings and attention heads to solve a task, and small
experiments even suggest that for simple tasks, these intuitions can already be quite
accurate.

This work was presented in ICML 2021 [WGY21].

2.3 Summary

In this thesis, we extensively explore the connection between RNNs and DFA variants,
using it both to successfully extract small models from RNNs and to meaningfully
analyse their practical expressive powers. Our extraction work takes on a completely
different direction from previous methods, approaching the problem with the help of
exact learning and achieving strong results in the process. Our analysis approaches the
networks from a more practical viewpoint than previous works, observing and explain-
ing tangible differences between different RNN architectures that had previously been
considered equivalent.9 We are motivated to continue such research on transformers,
but here encounter a much more basic problem: there is no familiar model to connect to
transformers to begin with. In this case, our work begins with inventing and exploring
such a model, paving the way for future work.

9Due to previous interesting analyses, whose assumptions (infinite precision and computation time)
unfortunately do not hold for how RNNs are used in practice [SS92]
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Chapter 3

Preliminaries

The works presented in this thesis will focus heavily on formal languages and deter-
ministic finite automata (DFAs), recurrent neural networks (RNNs), transformers, and
the learning algorithm L∗. These were presented briefly in the introduction, and are
presented in full detail here.

3.1 Sequences, Notations, and Language Models

For a finite alphabet Σ, the set of finite sequences over Σ is denoted by Σ∗, and the
empty sequence by ε. For any Σ and stopping symbol $ /∈ Σ, we denote Σ$ ≜ Σ ∪ {$},
and Σ+$ ≜ Σ∗·Σ$ – the set of s ∈ Σ$ \ {ε} where the stopping symbol may only appear
at the end.

For a sequence w ∈ Σ∗, its length is denoted |w|, its concatenation after another
sequence u is denoted u·w, its i-th element is denoted wi, and its prefix of length k ≤ |w|
is denoted w:k = w1·...·wk. We use the shorthand w−1 ≜ w|w| and w:−1 ≜ w:|w|−1. A
set of sequences S ⊆ Σ∗ is said to be prefix closed if for every w ∈ S and k ≤ |w|,
wk ∈ S. Suffix closedness is defined analogously.

For any finite alphabet Σ and set of sequences S ⊆ Σ∗, we assume some internal
ordering of the set’s elements s1, s2, ... to allow discussion of vectors of observations
over those elements.

Language Models (LMs) Given a finite alphabet Σ, a language model M over Σ
is a model defining a distribution PM over Σ∗, i.e., a function PM : Σ∗ → [0, 1] such
that ∑

w∈Σ∗ PM (w) = 1. For any w ∈ Σ∗, S ⊂ Σ+$, and σ ∈ Σ, P = PM induces the
following:

• Prefix Probability: P p(w) ≜ ∑
v∈Σ∗ P (w·v).

• Last Token Probability: if P p(w) > 0, then P l(w·σ) ≜ P p(w·σ)
P p(w) and P l(w·$) ≜

P (w)
P p(w) .

• Last Token Probabilities Vector: if P p(w) > 0, P l
S(w) ≜ (P l(w·s1), ..., P l(w·s|S|)).

• Next Token Distribution: P n(w) : Σ$ → [0, 1], defined: P n(w)(σ) = P l(w·σ).
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A language model that can directly compute its next-token distribution for each prefix
is known as an autoregressive language model. If we assume that P 6=NP, polynomial-
time autoregressive language models are strictly weaker than polynomial-time language
models in general1.

3.2 Automata

Deteministic Finite Automata A Deterministic Finite Automata (DFAs) A is a
tuple 〈Σ, Q, i, F, δ〉, in which Σ is the alphabet, Q the set of states, F ⊆ Q the set of
accepting states, i ∈ Q the initial state, and δ : Q × Σ → Q the transition function.
For a given automaton we add the notation f : Q → {Acc, Rej} as the function
giving the classification of each state, i.e. f(q) = Acc ⇐⇒ q ∈ F , and the notation
δ̂ : Q × Σ∗ → Q as the recursive application of δ to a sequence, i.e.: for every q ∈ Q,
δ̂(q, ϵ) = q, and for every w ∈ Σ∗ and σ ∈ Σ, δ̂(q, w·σ) = δ(δ̂(q, w), σ). As an abuse of
notation, we use δ̂(w) to denote δ̂(i, w).

(Regular) Languages The classification of a word w ∈ Σ∗ by a DFA A is defined
A(w) = f(δ̂(w)), and set of words it accepts, LA = {w ∈ Σ∗ | A(w) = Acc}, is said
to be the language recognised by A. Any language which can be recognised by some
automaton A is said to be a regular language.

Equivalence and Minimality Two automata A and B are equivalent if LA = LB, and
an automaton A = 〈Σ, Q, i, F, δ〉 is minimal if for every automaton A′ = 〈Σ, Q′, i′, F ′, δ′〉
equivalent to A, |Q| ≤ |Q′|. Two states q1, q2 ∈ Q of an automaton A = 〈Σ, Q, i, F, δ〉
are equivalent if for every w ∈ Σ∗, f(δ̂(q1, w)) = f(δ̂(q2, w)), and an automaton is
minimal iff it has no two equivalent states.

Presentation Note For visual clarity, ‘sink reject states’—states q /∈ F for which
δ(q, σ) = q for every σ—are not drawn in images of DFAs in this work. Thus for
example the second DFA in Figure 4.1 actually has 3 states, and rejects the sequence
“)”.

Probabilistic and Weighted DFAs (PDFAs and WDFAs) Probabilistic Deter-
ministic Finite Automata (PDFAs) are similar to DFAs, except there is additionally a
distribution defined over the next-state transitions for each current state, such that this
(now weighted) DFA additionally consists of a language model over all possible input
sequences. Specifically, a PDFA is a tuple A = 〈Q, Σ, δQ, qi, δW 〉 such that Q is a finite
set of states, qi ∈ Q is the initial state, Σ is the finite input alphabet, δQ : Q×Σ→ Q is
the transition function and δW : Q×Σ$ → [0, 1] is the transition weight function, satis-
fying ∑

σ∈Σ$
δW (q, σ) = 1 for every q ∈ Q. (A PDFA not satisfying this last condition

is referred to simply as a weighted DFA (WDFA).)

1By reduction from an NP complete language, through the concatenations of samples from the
language with their relevant proofs [LJL+21]
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The recurrent application of δQ to a sequence is denoted by δ̂ : Q × Σ∗ → Q, and
defined: δ̂(q, ε) ≜ q and δ̂(q, w·a) ≜ δQ(δ̂(q, w), a) for every q ∈ Q, a ∈ Σ, w ∈ Σ∗.
We abuse notation to denote: δ̂(w) ≜ δ̂(qi, w) for every w ∈ Σ∗. If for every q ∈ Q

there exists a series of non-zero transitions reaching a state q with δW (q, $) > 0, then A

defines a distribution PA over Σ∗ as follows: for every w ∈ Σ∗, PA(w) = δW (δ̂(w), $) ·∏
i≤|w| δW (δ̂(w:i−1), wi).

3.2.1 The L∗ Algorithm

Angluin’s L∗ algorithm is an exact learning algorithm for regular languages [Ang87].
The algorithm learns an unknown regular language L over an alphabet Σ from a teacher
T , generating as output a DFA A that accepts L.

L∗ interacts with an oracle (also referred to as a teacher) that must answer two
types of queries: membership queries, in which the oracle must classify words presented
by L∗, and equivalence queries, in which the oracle must accept or reject automata
proposed by L∗ based on whether or not they correctly represent the target language.
If the oracle rejects an automaton A, it must also provide a counterexample—a word
that A misclassifies with respect to the target language. L∗ continues to present queries
to the oracle until the oracle accepts a hypothesis A, at which point it terminates and
returns A.

The L∗ algorithm is guaranteed to always present a minimal DFA consistent with
all membership queries given so far. Additionally, provided the target language T

is regular, L∗ is guaranteed to return a minimal DFA for T in polynomial time in
(|Q|+ |w|+ |Σ|), where |Q| is the number of states in that DFA, Σ is the input alphabet,
and |w| is the length of the longest counterexample given by the oracle [Ang87; BJLS05].

In our work on extracting DFAs from RNNs (Chapter 4), we will use L∗ as a black
box, without getting into the exact details of how it works—meaning the interaction
above is all we need to know. But in our work on extracting weighted DFAs from
RNNs (Chapter 6), we will get deeper into L∗, adapting its internal behaviour to work
in the weighted and moreover slightly noisy setting. In particular, we will modify the
behaviour and definitions around the internal observation table which L∗ maintains.

3.2.2 The L∗ Internals

Observation Tables Given an oracle O, an observation table for O is a sequence
indexed matrix OP,S of observations taken from it, with the rows indexed by prefixes
P and the columns by suffixes S. The observations are OP,S(p, s) = O(p·s) for every
p ∈ P , s ∈ S. For any p ∈ Σ∗ we denote OS(p) ≜ (O(p·s1), ...,O(p·s2)), and for
every p ∈ P the p-th row in OP,S is denoted OP,S(p) ≜ OS(p). Intuitively, the rows
(prefixes) of the observation table represent the different states in the DFA that L∗

is learning, with the columns (suffixes) serving to prove their differences (two prefixes
p1, p2 with different observations on some suffix s, i.e. for which O(p1·s) = O(p2·s),
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must necessarily reach different states in the DFA).
Before every equivalence query, the L∗ algorithm queries its oracle until its obser-

vation table is closed and consistent, at which point it creates a DFA consistent with all
of the observations in the table and presents it as an equivalence query to the oracle.

Closedness and Consistency An observation table is called closed if for every p ∈ P

and σ ∈ Σ, there exists a p′ ∈ P such that OS(p·σ) = OS(p′). It is called consistent if
for every p1, p2 ∈ P such that OS(p1) = OS(p2), for every σ ∈ Σ, OS(p1·σ) = OS(p2·σ).

Intuitively, closedness means that as far as can be seen by the observations, for
every current state in the table, a transition with any one of the input tokens will lead
to a state that is already recorded in the table. Meanwhile, consistency means that if
any two prefixes in the table seem to represent the same state, then their transitions
on each of the input tokens will also lead to identical states.

An unclosed table is expanded by adding the new prefix p·σ ∈ P × Σ for which
a matching prefix p′ ∈ P did not already exist in the table. An inconsistent table is
expanded by adding a new suffix σ·s ∈ Σ × S on which two the seemingly matching
prefixes p1, p2 ∈ P turned out to disagree. Whenever the oracle returns a counterexam-
ple to L∗ , all of the prefixes of that example are added to P , and L∗ begins querying
the oracle to fill these new rows in the table and then expand it until it is again closed
and consistent.

Classically, L∗ recovers regular languages, meaning its oracle provides binary clas-
sifications for each input sequence. In our weighted DFA extraction work (Chapter 6),
we will modify L∗ to the weighted case. For this we will use an oracle for the last-token
probabilities of the target, O(w) = P l(w) for every w ∈ Σ+$, and maintain S ⊆ Σ+$.

3.3 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) An RNN R is a parameterised function
gR(h, x) that takes as input a state-vector ht ∈ Rds and an input vector xt+1 ∈ Rdi and
returns a state-vector ht+1 ∈ Rds . An RNN can be applied to a sequence x1, ..., xn by
recursive application of the function gR to the vectors xi, beginning from a given initial
state h0,R associated with the network. When applying an RNN to a sequence over a
finite alphabet, each symbol is deterministically mapped to an input vector using either
a one-hot encoding2 or an embedding matrix, the discussions in this work are agnostic
to this choice. For convenience, we refer to input symbols and their corresponding
input vectors interchangeably.

We denote the state space of a network R by SR ⊆ Rds , and by ĝR : SR×Σ∗ → SR

the recursive application of gR to a sequence, i.e. for every h ∈ SR, ĝR(h, ϵ) = h, and

2A one-hot encoding assigns each symbol in an alphabet of size v to an integer i in 1, ..., v, and
maps the symbol to an indicator vector in Rv where the ith entry is 1 and the others are 0.
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for every w ∈ Σ∗ and σ ∈ Σ, ĝR(h, w·σ) = gR(ĝR(h, w), σ). As an abuse of notation,
we also use ĝR(w) to denote ĝR(h0,R, w).

RNN-acceptors A binary RNN-acceptor is an RNN with an additional function fR :
SR → {Acc, Rej} that receives a state vector ht and returns an accept or reject decision.
The RNN-acceptor R is the pair of functions gR, fR with associated initial state h0,R.
Typically, fR is a log-linear classifier or a multi-layer perceptron. The classification of
a word w ∈ Σ∗ by an RNN-acceptor R is defined R(w) = fR(ĝR(w)), and the language
defined (or recognised) by R is the set of words it accepts, LR = {w ∈ Σ∗ | R(w) = Acc}.

A given RNN-acceptor can be interpreted as a deterministic, though possibly infi-
nite, automaton, which we do note is a more powerful model than that of deterministic
finite automata.

LM-RNNs A language model RNN (LM-RNN) over an alphabet Σ is an RNN coupled
with a prediction function fR : h 7→ d, where d ∈ [0, 1]|Σ$| is a vector representation
of a next-token distribution. LM-RNNs differ from PDFAs only in that their number
of reachable states (and so number of different next-token distributions for sequences)
may be unbounded. Assuming finite precision (including for integers) they become
technically equivalent, but the number of possible next-token distributions is still un-
manageably large, and an approximation will be required to convert an LM-RNN to a
W- or P-DFA.

We drop the subscript R when it is clear from context.

Multi-layer RNNs RNNs are often arranged in layers (“deep RNNs”). In a k-
layers layered configuration, there are k RNN functions g1, ..., gk, which are applied
to an input sequence x = x1, ..., xm as follows: x is mapped by g1 to a sequence of
state vectors h1,1, ..., h1,m, and then each sequence hi,1, ..., hi,m is mapped by gi+1 to
the sequence hi+1,1, ..., hi+1,m. For such multi-layer configurations, we take the entire
state-vector at time t to be the concatenation of the individual layers’ state vectors:
ht = h1,t· h2,t...·hk,t. Generally, the classification component of a multi-layered RNN-
acceptor or LM-RNN is applied only to the final state of the top layer: fR(ht) = f ′

R(ht,x)
for some f ′

R.

RNN Architectures The parameterised functions gR and fR can take many forms.
The function fR can take the form of a linear transformation or a more elaborate
classifier. RNNs were first introduced by Elman [Elm90], with a simple form: in Elman-
RNNs (also known as simple-RNNs), gR is an affine transform followed by a non-
linearity, gR(h, x) = tanh(W xx + W hh + b). Here W x, W h and b are the parameters of
the function that need to be trained, and have dimensions ds × di, ds × ds, and ds × 1
respectively. Other popular forms are the Long Short-Term Memory (LSTM) [HS97]
and the Gated Recurrent Unit (GRU) [CvMBB14; CGCB14b]. These more elaborate
functions are based on a differentiable gating mechanism, and have been repeatedly
demonstrated to be easier to train than the Elman RNN, and to robustly handle long-
range sequential dependencies. We refer the interested readers to textbooks such as
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[GBC16; Gol17] or to the documentation of the PyTorch framework [PGC+17] for their
exact forms.

While the extraction algorithms we present in these works (Chapters 4 and 6) will
be agnostic to the exact forms of gR and fR, applying equally to any RNN architec-
ture, we will show in another section that their formulations do matter, and can even
lead to substantial differences in the expressive power of different RNN architectures
(Chapter 5).

3.3.1 RNN Abstraction

Given a neural network R with state space S and alphabet Σ, and a partitioning
function p : S → N, Giles et al presented a method for extracting a DFA for which
every state is a partition from p, and the state transitions and classifications are defined
by a single sample from each partition [GMC+92]. Their method can be seen as a
simple sheared exploration of the partitions defined by p. The exploration begins from
the partition containing the initial state p(h0,R), explores according to the network’s
transition function gR, and shears wherever it reaches an abstract state (partition) that
has already been visited. We present it as pseudocode in Algorithm 3.1.

We denote by AR,p the DFA extracted by this method from a network R and
partitioning p, and denote all its related states and functions by subscript R, p.3 Note
that the algorithm is guaranteed to extract a deterministic finite automaton (DFA)
from any network and finite partitioning.

Algorithm 3.1 Pseudo-code of RNN R exploration with state space partitioning p :
S → N. The functions of the network are marked R subscript.
Method map_transitions(R, p):

Q, F, δ ← ∅
New ← {h0,R}
while New 6= ∅ do

h← pop from New
q ← p(h)
if q /∈ Q then

Q← Q ∪ {q}
if fR(h) = Acc then F ← F ∪ {q}
for σ ∈ Σ do

h′ ← gR(h, σ)
δ ← δ ∪ {((q, σ), p(h′))}
New ← New ∪ {h′}

end
end

end

3The exact order of the exploration (i.e., selection of states from New) is not important, but if we
want to be well defined we can assume that New is FIFO and that Σ has an order which the for loop
over it follows. This would make the exploration a (sheared) BFS.
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3.4 Transformers

Transformers–both encoders and decoders–are highly parallelisable neural networks,
which implement a length preserving sequence-to-sequence function using several com-
ponents. They are composed of multiple layers of attention and feed forward computa-
tions, connected with layer-norms, residual connections (also known skip connections),
and linear transformations.

In this thesis, we will present an abstraction (RASP) of the transformer encoder
(Chapter 7), and so for completeness we present the architecture here in full. We will
begin with the high-level description, and then get into the details of the separate
components.

Transformer-Encoders A transformer-encoder [VSP+17] with L layers, H heads,
and input and internal dimensions d, m is a length-preserving 4 function T : (Rd)∗ →
(Rd)∗ parameterised by the weights of L transformer-encoder layers ℓ1, ..., ℓL, each with
H heads and input and internal dimensions d, m, and defined for every X ∈ (Rd)∗ as
follows:

T (X) = ℓL(...ℓ2(ℓ1(X)))

We interpret each X ∈ (Rd)∗ as a sequence of n = |X| input vectors, and occa-
sionally also refer to it in matrix form X ∈ Rn×d, where each row is one of the input
vectors. We abuse notation and use these representations interchangeably.

Transformer-Encoder Layer A transformer-encoder layer with input dimension d,
internal dimension m, and H heads (such that d/H ∈ N) is a length-preserving function
ℓ : (Rd)∗ → (Rd)∗ composed of one multi-headed attention A with input dimension
d and H heads, one feed forward function F with input dimension d and internal
dimension m, two layer-norm functions n1, n2 over d, and one linear transformation
lA : (Rd)∗ → (Rd)∗, as follows: for every X ∈ (Rd)∗,

X1 = X + lA(A(n1(X))) (3.1)

ℓ(X) = X1 + F(n2(X1)) (3.2)

The additions in both equations are referred to as skip or residual connections, a
simple but helpful mechanism in neural networks [HZRS16]. The layer-norm, feed-
forward, and skip connection components of the layer are all positionwise; were it not
for the attention, the entire layer would be positionwise.

Permutation Equivariance of Transformers An interesting trait of the trans-
former architecture is that it has no inherent positional awareness, i.e., every trans-
former T : (Rd)∗ → (Rd)∗ is permutation equivariant . Specifically: for any transformer

4i.e. for every X ∈ (Rd)∗, |f(X)| = |X|
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T : (Rd)∗ → (Rd)∗, input sequence X = x1, x2, ..., xn ∈ Rd, and permutation function
π over [n], then T (π(X)) = π(T (X)) 5. This is overcome using a positional embedding,
which is added alongside the token embedding when using a transformer in practice.

Embedding Functions Transformers T : (Rd)∗ → (Rd)∗ can be used to process
non-empty sequences over a finite alphabet Σ by composing them with a simple length-
preserving embedding function, y0 : Σ+ → (Rd)∗: Ty0(x) ≜ T (y0(x)). This y0 is
in turn composed from a token embedding w : Σ → Rd and position embedding p :
N → Rd, which are normally combined using addition: for every x = x1...xn ∈ Σ∗,
y0(x1, x2, ..., xn)i = w(xi) + p(i)6. w and p are essentially lookup tables, whose values
may be taken from existing or designed tables or learned alongside the transformer.

From here, whenever we refer to a transformer, we mean a transformer-encoder over
some finite alphabet Σ and paired with an initial embedding y0 as described above.

In theory transformers are designed over the reals, of course in practice they are
implemented over floating point approximations.

We now present the main components of the transformer in detail.

3.4.1 Basic Functions

Linear Transformations A linear transformation is a function l : Rd → Rm pa-
rameterised by a matrix Ml ∈ Rm×d and bias bl ∈ Rm, as follows: for every x ∈ Rd,
l(x) = Mlx

T + b. Linear transformations are applied positionwise to input sequences,
i.e. for X ∈ (Rd)∗, l(X) = MlX

T + b.

Softmax Softmax is a length-preserving function S : R∗ → (0, 1]∗ that creates dis-
tributions from any vector x of scalars as follows: denoting n = |x|, then for each
i ∈ [n]:

S(x)i = exi∑
i∈[n] exi

ReLU The Rectified Linear Unit ReLU : R → R≥0 is the non-linear function
ReLU(x) = max(x, 0).

3.4.2 Feed-Forward

A feed-forward function with input dimension d and internal dimension m is a position-
wise function F : (Rd)∗ → (Rd)∗ obtained by composing two linear transformations L1 :
(Rd)∗ → (Rm)∗,L2 : (Rm)∗ → (Rd)∗ and ReLU, as follows: F(X) ≜ L2(ReLU(L1(X))).

5As all components of transformers other than attention are positionwise, we need only consider
attention in order to be convinced of this. We will see that at each output location i, attention is a
function only of lK(X), lV (X), and lQ(X)i, where the order of the rows of lK(X) and lV (X) does not
matter as long as they remain aligned with each other.

6Note that without the position embedding, y0 would be permutation equivariant, and so the
combination Ty0 would be too (as T is permutation equivariant)—an undesirable trait for sequence
processing.
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The feed-forward component is positionwise (it manipulates each row of the input
matrix (each position in the input sequence) independently), but the combination of
two linear transformations with nonlinear activation between them provides strong (po-
sitionwise) expressive capacity [HSW89b]. In transformers, the feed-forward component
is often referred to as the feed-forward sublayer.

In RASP, our abstraction of the transformer model (Section 7.3), we will represent
the feed-forward sublayers by allowing the application of most basic mathematical,
boolean, and character-manipulating functions globally to all positions in an input
sequence.

3.4.3 Attention

Attention is a function originally devised to enable ‘recollection’ of previously processed
data from a history of arbitrary length [BCB15; LPM15]. It can also be used to collect
data from positions in past and future, which is useful in settings where full sequences
are given at once–e.g. in masked language modelling, where a missing word must be
recovered. Transformers use a variant called scaled dot-product attention.

Scaled Dot-Product Attention with input dimension mi, inner dimension d, and
output dimension mo is a function a : (Rmi)∗ → (Rmo)∗ parameterised by 4 linear
transformations, lQ, lK , lV : Rmi → Rd and lO : Rd → Rmo , defined for every X ∈
(Rmi)∗ as follows:

a(X) = lO(S
(

lQ(X)lK(X)T

√
m

)
lV (X))

Note. Often attention is presented as S(QKT
√

m
)V , placing lO separately in the trans-

former definition, and omitting–only for the presentation–the biases in the linear trans-
formations.

For convenience, from here on we refer to scaled dot-product attention simply as
attention.

Transformers often use multiple attention heads in parallel, as follows:

Multi-Headed Attention Given input dimension mi, output dimension mo, and
some H such that d = mi

H ∈ N, a multi-headed attention from mi to mo with H heads
is simply the sum of H attention heads from mi to mo, each with inner dimension d.

A(X) =
∑

h∈[H]
ah(X)

In transformers, the attention (or more often, multi-headed attention) component
is often referred to as the attention sublayer.

In RASP, we will represent the attention sublayers by way of two manipulations:
select, which can create a binary attention matrix between all positions according to
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symbolic comparisons between their current values, and aggregate, which can take a
binary attention matrix and some representation v of the current values in the positions,
and average into each output position the current v values of the positions it has
attended to.

3.4.4 Layer-norm

Layer-norm A single-row layer-norm [BKH16] over dimension d is a function n :
Rd → Rd parameterised by vectors a, b ∈ Rd, and defined for every x ∈ Rd and i ≤ d

as follows:
g(x)i = ai(xi − x̄)√

var(x)
+ bi

where x̄ =
∑

j∈[d] xj

d is the mean of x and var(x) = 1
d−1

∑
i≤d(xi − x̄)2 is its variance.

A layer-norm over dimension d, n : (Rd)∗ → (Rd)∗, is a positionwise application of
a single-row layer-norm of dimension d.

Note. Layer-norm as stated above cannot be used in practice. In particular, to avoid
division by zero, an additional parameter ε ∈ R is used and added to var(x) before
applying the square root. We denote this variant nε, according to the parameter ε

(note that n0 = n).
Layer-norm makes transformers train better in practice, but its expressive effect on

the transformer architecture—if any—is unclear. We will not represent it in our RASP
abstraction.
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Chapter 4

Extracting Automata from
Recurrent Neural Networks
Using Queries and
Counterexamples

4.1 Introduction

In recent years, there has been significant interest in the use of neural models, and
in particular recurrent neural networks (RNNs), for learning languages. Like other
supervised machine learning techniques, RNNs are trained based on a large set of
examples of the target concept.

RNNs can reasonably approximate a variety of languages, and even precisely rep-
resent a regular language [Cas98]. However, they are in practice unlikely to generalise
exactly to the concept being trained, and what they eventually learn in actuality is un-
clear [OG00]. Indeed, several lines of work attempt to glimpse into the RNN black-box
[GMC+92; ZGS93; OG96; CSS03; Jac05; KJL15; LCHJ15; LDG16; SGH+16; LBJ16;
KCA16; SPK16; AKB+16; MS17; WZO+17; AMMS17].

In contrast to the supervised ML paradigm, the exact learning paradigm considers
setups that allow learning a target language without approximation. For example, An-
gluin’s L∗ algorithm enables the learning of any regular language, provided a teacher
capable of answering membership (request to label example) and equivalence (compar-
ison of proposed language with target language) queries is available [Ang87].

In this work we use exact learning to elicit the true concept class of a trained
recurrent neural network. This is done by treating the trained RNN as the teacher of
the L∗ algorithm. To the best of our knowledge, this is the first attempt to use exact
learning with queries and counterexamples to extract an automaton from a given RNN.

Recurrent Neural Networks Recurrent neural networks (RNNs) are a class of neural
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networks which are used to process sequences of arbitrary lengths. When operating over
sequences of discrete alphabets, the input sequence is fed into the RNN on a symbol-by-
symbol basis. For each input symbol the RNN outputs a state vector representing the
sequence up to that point, combining the current state vector and input symbol at every
step to produce the next one. An RNN is essentially a parameterised mathematical
function that takes as input a state vector and an input vector, and produces a new
state vector. The RNN is trainable, and, when trained together with a classification
component, the training procedure drives the state vectors to provide a representation
of the prefix which is informative for the classification task being trained.

Classification An RNN can be paired with a classification component, a classifier
function that takes as input a state vector and returns a binary or multi-class classifi-
cation decision. The RNN and the classifier are combined by applying the RNN to the
sequence, and then the classifier to the final resulting state vector. When the classifi-
cation component gives a binary classification for each state vector, the combination
defines a binary classifier over sequences, which we call an RNN-acceptor. When the
component gives a distribution over the possible next tokens, the combination defines a
next-token distribution for each input sequence, which we call a Language-Model RNN
(LM-RNN).

A trained RNN-acceptor can be seen as a state machine in which the states are high-
dimensional vectors: it has an initial state, a well defined transition function between
internal states, and a well defined classification for each internal state. A trained LM-
RNN is not immediately analogous to a binary state machine, but we will see in this
work how it may be interpreted as a one, and under this interpretation also extracted
from using our method.

RNNs play a central role in deep learning, and in particular in natural language
processing. For more in-depth overview, see [GBC16; Gol16; Gol17].

We now turn to the question of understanding what an RNN has actually learned.
We formulate the question around RNN-acceptors, but later (in Section 4.7) show how
the solution relates to LM-RNNs.

Motivation Given an RNN-acceptor R trained over a finite alphabet Σ, our goal is
to extract a deterministic finite-state automaton (DFA) A that classifies sequences in
a manner observably equivalent to R. (Ideally, we would like to obtain a DFA that
accepts exactly the same language as the network, but this is a much more difficult
task.1)

Note: In this work, when understood from context, we use the term RNN to mean
RNN-acceptor. Additionally, we use “automata” to refer specifically to deterministic
finite automata (DFAs) (as opposed to other automata variants, such as pushdown
automata or weighted automata).

1In fact, given the results showing that some RNN architectures can count [GS01; WGY18b], a
DFA may not be sufficient for representing the language learned by an RNN at all.
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Previously existing techniques for DFA extraction from recurrent neural networks
are based on creating an a-priori partitioning of the RNN’s state space, and mapping
the transitions between the resulting clusters (e.g., [GMC+92; ZGS93]). In this work
however, we approach the question using exact learning.

Exact Learning In the field of exact learning, concepts (sets of instances) can be
learned precisely from a minimally adequate teacher—an oracle capable of answering
two query types [GK95]:

• membership queries: state whether a given instance is in the concept or not

• equivalence queries: state whether a given hypothesis (set of instances) is equal
to the concept held by the teacher. If not, return an instance on which the
hypothesis and the concept disagree (a counterexample).

The L∗ algorithm [Ang87] is an exact learning algorithm for learning a DFA from a
minimally adequate teacher with knowledge of some regular language L. In this context,
the concept is L, the instances are finite sequences (‘words’) over its alphabet, and the
hypotheses are presented as automata A defining a regular language LA. L∗ completes
when the oracle accepts its latest equivalence query, i.e. when LA = L.

Our Approach We treat DFA extraction from RNNs as an exact learning problem.
We use Angluin’s L∗ algorithm to elicit a DFA from any type of trained RNN, using the
RNN as a teacher. In doing so, we maintain only a coarse partitioning of the RNN’s
state space, refining it only as much as necessary to answer L∗’s queries.

RNNs as Teachers A trained RNN-acceptor can trivially answer membership queries,
by feeding input sequences to the network for classification. Answering equivalence
queries, however, is not so easy. The main challenge is that no finite interpretation of
the network’s states and transitions is given upfront: the states of an RNN are high-
dimensional real-valued vectors, resulting in an infinite state space which cannot be
exhaustively enumerated and compared to the hypothesis.

To address this challenge, we use a finite abstraction of the RNN R to answer
equivalence queries: we define a finite partitioning of the state space, and create from
it an automaton which can be compared to the hypothesis A. A unique aspect of this
setting compared to previous L∗ works is that we only observe an abstraction of the
teacher. This means that when there is a disagreement between the teacher and the
learner, it may be not that the learner is incorrect and needs to refine its representation,
but rather (or also) that our abstraction of the teacher is not precise enough and must
be refined. Indeed, at every equivalence query, the current finite abstraction and current
proposed automaton A act as two hypotheses for the RNN R’s ground truth, which
must at least be equivalent to each other in order to both be equivalent to R. Thus,
whenever the two disagree on a sample, we find its true classification in R, obtaining
through this either a counterexample to A or a refinement to the abstraction.

Main Contributions The main contributions of this work are:
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• We present a novel and general framework for extracting automata from trained
RNNs, using the RNNs as teachers in an exact learning setting.

• We implement2 the technique and show its ability to extract descriptive automata
in settings where previous approaches fail. We demonstrate its effectiveness on
modern RNN architectures—multi-layer LSTMs and GRUs.

• We describe how the technique can be used to learn DFAs from only positive
examples, and demonstrate its effectiveness in this setting. To do so we show how
to create RNN-acceptors from positive examples only, using a language modelling
objective.

• We apply our technique to RNNs trained to 100% train and test accuracy on
simple languages, and discover in doing so that some RNNs have not generalised
to the intended concept. Our method easily reveals and produces adversarial
inputs—words misclassified by the trained RNN and not present in the train or
test set.

A shorter version of this work has been presented in ICML 2018 [WGY18a].

Notes The technique we will present in this work applies to all RNNs, and in particular
is agnostic to possible differences in the update and classification functions gR and fR as
described in Section 3.3. In our experiments, we use linear transformation for fR, and
the popular LSTM and GRU architectures for gR. For the LSTM, whose transition
function is often described as converting a triplet of input-vector, state-vector and
memory-vector to a next state-vector and memory-vector, we treat the concatenation
of the state-vector and memory-vector as a single state-vector with dimension ds = 2hs,
where hs is the hidden size of the cell.

4.2 Existing Approaches and Related Work

Soon after the introduction of the RNN [Elm90], it was shown that, when learning a
regular language, a simple (“Elman-”) RNN is able to cluster its reachable states in a
manner that resembles a (not necessarily minimal) DFA for that language [CSM89]3).
Researchers soon began seeking ways to recover small DFAs from trained RNNs [WK91;
GMC+92; ZGS93], and there has since been a lot of research on extracting rules, and
in particular DFAs, from RNNs: see [WZO+17] and [Jac05] for partial surveys.

Transition Mapping Continuing from the above observation of Cleeremans, Servan-
Schreiber, and McClelland, Giles, Miller, Chen, Chen, Sun, and Lee proposed a method
for extracting DFAs from second-order RNNS, by traversing the clusters of states ac-

2www.github.com/tech-srl/lstar_extraction
3This work references a slightly older version of [Elm90].
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cording to the RNN’s behaviour [GMC+92]4. In particular, given a neural network R

with state space S and alphabet Σ, and a partitioning function p : S → N, [GMC+92]
presents a method (Algorithm 3.1) for extracting a DFA abstraction of the network
in which every abstracted state is an entire partition from p, and the transitions be-
tween abstracted states and their classifications are obtained by a single sample of the
continuous values in each such partition.

In both their own work and more recent research by others (e.g. [WZO+17]), this
extraction method has been shown to produce DFAs that are reasonably representative
of given second-order RNNs—provided the given partitioning captures the differences
between the network states well enough.

Quantisation For networks with bounded output values, [GMC+92] suggests dividing
each dimension of the network state space into q ∈ N (referred to as the quantisation
level) equal intervals, yielding qds subsets of the output space with ds being the length
of the state vectors.

However, because this technique applies a uniform quantisation over the entire
output space, it suffers from inherent state explosion and does not scale to the networks
used in practice today: the original paper demonstrates the technique on networks with
8 hidden values, whereas today’s can have hundreds to thousands.

Clustering Other state-partitioning approaches use clustering [CSS03; WZO+17;
CCRB17]. In these approaches, an unsupervised classifier such as k-means is applied
to a large sample set of reachable network states, creating a finite number of clusters.
The sample states can be found by various methods, such as a BFS exploration of the
network state space to a certain depth, or by recording all state vectors reached by
the network when applied to its train set (if available). The partitioning of the state
space defined by the clusters is then explored in a similar way to that described by
[GMC+92]. Clustering approaches yield automata that are much smaller than those
given by the partitioning method originally proposed in [GMC+92], making them more
applicable to networks of today’s standards.

Weaknesses In both of these approaches the partitioning is set before the extraction
begins, with no mechanism for recognising and overcoming overly coarse behaviour.
Both approaches thus face the challenge of choosing the best parameter value for ex-
traction, and are generally applied several times with different parameter values, after
which the ‘best’ DFA is chosen according to a heuristic (e.g., accuracy against RNN
on the test set). Additionally, both approaches can still have rather large state space,
and—as the exploration of the extracted DFA is performed blindly—these states cannot
be merged until the extraction is complete and the DFA can be minimised.

Note on Architectures Many of these works use second order RNNs [GSC+90], which
are shown to better map DFAs than simple RNNs [GGCC94; WZO+18]. In this work

4In later work, Omlin and Giles futher evaluated this method and the clustering of a trained RNN’s
states, confirming that the states are indeed organised in tight clusters [OG96].
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however, we experiment on the popular GRU [CvMBB14; CGCB14b] and LSTM [HS97]
architectures, as they are more widely used in practice.

4.2.1 Recent Works and Future Directions

Since the initial publication of this method, several other approaches for extracting
DFAs have been suggested, and still other works have begun grappling with more
complicated targets such as weighted automata or context free languages.

DFAs [MY18] released an L∗-based approach for learning DFAs from any neural net-
work architecture, answering equivalence queries by drawing random samples over the
input alphabet and checking if they are counterexamples to the proposed automaton.
Their work analyses this approach from a PAC learning perspective and applies also to
completely black box models, in contrast to our own work and other extraction works
listed above (which rely on access to the RNN’s hidden state from different prefixes).
In Section 4.6.7, we compare our method to this approach, highlighting the advan-
tage of the abstraction based approach to equivalence queries when the hidden state is
available.

[WN19] propose state-regularised RNNs, a variant of RNNs that is regularised to-
wards transitioning between a finite number of learned internal states. Their work
discusses both training these new RNNs and the recovery of DFAs from them once
trained, presenting an extraction method tailored to their proposed architecture.

WFAs [AEG18] use spectral learning ([BCLQ14]) to extract weighted, non-deterministic
finite automata (WFAs) from any black box language model, evaluating on RNNs.
[OWSH20] also apply spectral learning for WFA extraction, but this time to whitebox
RNNs, using an adaptation of the equivalence query presented in this work to refine
the WFA beyond the initial spectral extraction. In a later work, we adapt L∗ to a
weighted setting, extracting weighted deterministic finite automata (WDFAs) from
any black box language model [WGY19]. Finally, more recently, [ZDX+21] expand on
the partitioning and then transition-mapping approach of the classical DFA extraction
papers to recover WFAs from RNNs without using exact or spectral learning.

CFGs With the understanding that some RNN architectures behave more like counter
machines [GS01; WGY18b; SGBS19], which are more expressive than DFAs, and indeed
that an RNN in general might be trained on something more complicated than a regular
language, it becomes interesting to consider extraction of context free languages (CFGs)
from RNNs.

Recently, [YW21] use the DFA-extraction method presented in this work as the
initial step in an algorithm for extracting a subclass of CFGs from trained RNNs,5 and
[BBF+21] apply results on visibly pushdown languages and tree automata to extract a
different subclass of CFGs, also from trained RNNs. Independently, there exist several

5By creating an algorithm for generalising CFGs from a sequence of DFAs, and using the hypotheses
provided by L∗as that sequence.
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works on learning (subclasses of) CFGs from queries, or from examples only, that have
not yet been applied for extraction from RNNs [Sak92; Yok03; Tel06; CE07; Cla10;
DFG10; SY16; CY16; Yos19].

4.3 Learning Automata from RNNs using L*

In the following sections we show how to build a teacher for the L∗ algorithm around
a given RNN-acceptor R. The teacher must be able to answer membership and equiv-
alence queries as required by L∗ .

To implement membership queries we rely on the RNN classifier itself. To de-
termine whether a given word w is in the unknown language LR, we simply run the
RNN on this word, and check whether it accepts or rejects w.

To implement equivalence queries we check the equivalence of the L∗ hypoth-
esised automaton A against an abstraction AR,p of the network, where p is a parti-
tioning over the network’s state space. If we find a disagreement w ∈ Σ∗ between
A and the current abstraction AR,p, we use R to determine whether this is because
the L∗ hypothesis is incorrect (i.e., LR(w) 6= A(w)), or a result of a poor abstraction
(i.e., LR(w) 6= AR,p(w)). In the former case (LR(w) 6= A(w)), we end the equivalence
query and return w as a counterexample to L∗ . Otherwise, we refine p and restart the
comparison of A and AR,p. If no such disagreement w is found (i.e., A and AR,p are
equivalent), we accept L∗’s hypothesis and the extraction ends.

p is maintained between equivalence queries, i.e., the partitioning p at the start
of the j+1th equivalence query is the same partitioning p from the end of the jth

equivalence query.
In theory, the extraction continues until the automaton proposed by L∗ is accepted,

i.e., A and AR,p converge. In practice, for some RNNs this may take a long time and
yield a large DFA (>30,000 states). To counter this, we place time or size limits on the
interaction, after which the last L∗ hypothesis is returned.6 We see that these DFAs
still generalise well to their respective networks.

The partitioning p has to be coarse enough to facilitate feasible computation of
AR,p, but fine enough to capture the interesting observations made by the network. As
we have an iterative setting, we can satisfy this by starting with a very coarse initial
abstraction and refining it only sparingly, whenever it is proven incorrect.

The equivalence queries are described in Section 4.4, and the partitioning and its
refinements in Section 4.5.

6We could also return the last abstraction, AR,p, and focus on refining p over returning counterex-
amples. But we find that the abstractions are often less accurate (see Section 4.6.8). We suspect this
is due to the lack of ‘foresight’ AR,p has, as opposed to L∗’s many separating suffix strings (loosely, L∗

works by maintaining two growing lists of ‘interesting’ prefixes and suffixes, generating an equivalence
query only when all the prefixes going into the each hypothesis state have the same classification on
all of the suffixes).
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Note Convergence of AR,p and A does not guarantee that R and A are equivalent.
Providing such a guarantee would be an interesting direction for future work.

4.4 Answering Equivalence Queries

Given a network R, a partitioning function p over its state space S, and a proposed
minimal automaton A, we wish to check whether the abstraction of the network AR,p is
equivalent to A, preferably while exploring as little of AR,p as necessary. If the two are
not equivalent—meaning, necessarily, that at least one is not an accurate representation
of the network R—we wish to find and resolve the cause of the inequivalence, either
by returning a counterexample to L∗ (and so refining A), or refining the partitioning
function p (and so the abstraction AR,p) in the necessary area. Hence our equivalence
query must be able not only to return counterexamples when necessary, but also to
specifically identify overly-coarse partitions in the partitioning p.

For clarity, from here onwards we refer to the continuous network states h ∈ S as
R-states, the abstracted states in AR,p as A-states, and the states of the L∗ DFAs A as
L-states.

In this section we describe the details of an equivalence query assuming a given
partitioning p and refinement operation refine. We present our initial partitioning p0

and refine operation in Section 4.5.

4.4.1 Parallel Exploration

The key intuition to our approach is the fact that A is minimal, and so each state in
the DFA AR,p should—if the two automata are equivalent—be equivalent to exactly
one state in the DFA A. This is based on the fact that for automata A = 〈Σ, Q, i, F, δ〉
and A′ = 〈Σ, Q′, i′, F ′, δ′〉 in which A′ is minimal, A and A′ are equivalent if and only
if there exists a mapping m : Q → Q′ satisfying that m(i) = i′, f(q) = f ′(m(q)), and
m(δ(q, σ)) = δ′(m(q), σ) for every q, σ ∈ Q× Σ.

To check the equivalence of AR,p and A without necessarily having to fully explore
AR,p, we build such a mapping between their states on-the-fly: we associate between
states of the two automata during the extraction of AR,p, by traversing A in parallel
to the extraction of AR,p (which is extracted according to algorithm 3.1). We update
this association for all R-states visited during this extraction, i.e., including those at
which the traversal is sheared.7 Any inconsistencies (conflicts) in this association are
definite indicators of inequivalence between AR,p and A.

Conflict types We refer to associations in which an accepting A-state is associated
with a rejecting L-state or vice versa as abstract classification conflicts. We refer to
multiple but disagreeing associations for a single A-state, i.e. situations in which one

7These are important: they are the repeat visits to an A-state, from which a partitioning conflict
may occur.
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A-state is associated with two different (minimal) L-states, as partitioning conflicts.
(The inverse, in which one minimal L-state is associated with several A-states, is not a
problem: AR,p is not necessarily minimal and so these states may be equivalent.)

Recalling that the ulterior motive is to find inconsistencies between the proposed
automaton A and the given network R, and that the exploration of AR,p runs atop an
exploration of the actual R-states, we also check at each point during the exploration
whether the current R-state h ∈ SR has identical classification to that of the current
L-state reached in the parallel traversal of A. As the classification of a newly discovered
A-state is determined by the R-state with which it was first mapped, this also covers all
abstract classification conflicts. We refer to failures of this test generally as classification
conflicts, and check only for them and for partitioning conflicts.

4.4.2 Conflict Resolution and Counterexample Generation

Classification conflicts are a sign that a path w ∈ Σ∗ satisfying R(w) 6= A(w) has
been traversed in the exploration of AR,p, and so necessarily that w is a counterexam-
ple to the equivalence of A and R. They are resolved by returning the path w as a
counterexample to L∗ , so that it may refine its observations and provide a new au-
tomaton. All that is necessary for this is to maintain the current path w throughout
the exploration.

Partitioning conflicts are a sign that an A-state q ∈ QR,p, that has already been
reached with a path w1 during the exploration of AR,p, has been reached again with a
new path w2 for which the L-state is different from that of w1. In other words, par-
titioning conflicts give us two sequences w1, w2 ∈ Σ∗ for which ˆδR,p(w1) = ˆδR,p(w2)
but δ̂A(w1) 6= δ̂A(w2). We denote by q1, q2 ∈ QA the L-states reached in A by
these sequences, qi = δ̂A(wi). As A is a minimal automaton, q1 and q2 are nec-
essarily inequivalent, meaning there exists a differentiating suffix s ∈ Σ∗ for which
fA(δ̂A(q1, s)) 6= fA(δ̂A(q2, s)), i.e. for which fA(w1·s) 6= fA(w2·s). Conversely, as

ˆδR,p(w1) = ˆδR,p(w2) then ˆδR,p(w1·s) = ˆδR,p(w2·s), and so fR,p(w1·s) = fR,p(w2·s).
Clearly in this case A and AR,p must disagree on the classification of either w1·s or

w2·s, and so at least one of them must be inconsistent with the network R. In order to
determine the ‘offending’ automaton, we pass both w1·s and w2·s to R for their true
classifications. If A is found to be inconsistent with the network, the word on which A
and R disagree is returned to L∗ as a counterexample.

Else, w1·s and w2·s are necessarily classified differently by the network, and AR,p

should not lead w1 and w2 to the same A-state. The R-states h1 = ĝ(w1) and h2 = ĝ(w2)
are passed, along with the current partitioning p, to a refinement operation, which
refines p such that the two are no longer mapped to the same A-state—preventing a
reoccurrence of that particular conflict.

The previous reasoning can be applied to w2 with all paths w1 that have reached
the conflicted A-state q ∈ QR,p without conflict before w2 was traversed. As such, the
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classifications of all the words w1·s are tested against the network, prioritising returning
a counterexample over refining the partitioning.8 If eventually it is the partitioning that
is refined, then the R-state that triggered the conflict, h = ĝ(w2), is split from all R-
states h1 = ĝ(w1) for w1 that have already reached q in the exploration, in one single
refinement.9

Every time the partitioning is refined, the guided exploration starts over, and the
process repeats until either a counterexample is returned to L∗, equivalence is reached
(exploration completes without a counterexample), or some predetermined limit (such
as time or partitioning size) is exceeded. We note that in practice—and very often so
with the decision-tree based refinement operation that we present—there are cases in
which starting over is equivalent to merely updating the associated A-state p(h) of the
R-state h that triggered the refinement and continuing the exploration from there, and
we implement our equivalence query to take advantage of this.

In our implementation, whenever we find several potential counterexamples to the
proposed DFA, we check them in order of increasing length and return the shortest
counterexample we have found.

4.4.3 Algorithm

Pseudocode for this entire equivalence checking procedure (ignoring preference for
shortest counterexamples) is presented in Algorithms 4.1 and 4.2, with the main loop in
algorithm 4.1.10 The description here assumes the existence of a refinement operation
refine separating in the partitioning an R-state h from a set of other R-states H, we
present such a method in Section 4.5.

The overall iterative process, including the refinements to p, is desribed in
check_equivalence, and the equivalence checking for a specific partitioning p is
given in parallel_explore.

parallel_explore attempts to build AR,p in variables Q, F, q0, δ, while also main-
taining the associations of these states to R and A as follows:

• Visitors holds for every A-state q the set of all R-states h satisfying p(h) = q that
have been visited during the exploration. This is used for refinements triggered
by partitioning conflicts.

• Path holds for every R-state h the sequence w ∈ Σ∗ with which h has been visited
during the exploration.11 This is used for generating potential counterexamples

8As we will ultimately return the last L∗ hypothesis and not the abstraction if time runs out (see
Subsection 4.6.8).

9At least, this is the ideal case. In practice, we allow a relaxed setting where it might only be split
from some (non-empty) subset of them. In the worst case, this will trigger a further refinement when
the query is attempted again.

10And full code is available online at www.github.com/tech-srl/lstar_extraction.
11Technically this should be maintained as a set of sequences reaching h, but in practice, the prob-

ability of there being more than one such sequence per h is too low to consider.
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Algorithm 4.1 Pseudo-code for equivalence checking of an RNN R and minimal DFA
A, with initial partitioning p0. The main loop is in check_equivalence. The supporting
functions update_records and handle_partition_conf are presented in algorithm 4.2.

Method parallel_explore(R,A, p):
empty all of: Q, F, δ, Unexplored, Visitors, Path, Association
q0 ← p(h0,R)
update_records(q0, h0,R, qA,0, ε)
while Unexplored 6= ∅ do

h← Pop(Unexplored)
q ← p(h)
qA ← Association(q)
if fR(h) 6= fA(qA) then

return Reject, Path(h)
end
if q ∈ Q then

continue
end
Q← Q ∪ {q}
if fR(h) = Acc then

F ← F ∪ {q}
end
for σ ∈ Σ do

h′ ← gR(h, σ)
q′ ← p(h′)
δ(q, σ)← q′

q′
A ← δA(qA, σ)

if q′ ∈ Q and Association(q′) 6= q′
A then

return handle_partition_conf(q′, h′,Association(q′), q′
A)

end
update_records(q′, h′, q′

A,Path(h)·σ)
end

end
return Accept, ε

Method check_equivalence(R,A, p0):
p← p0
verdict ← Restart_Exploration
while verdict = Restart_Exploration do

verdict, w ← parallel_explore(R,A, p)
end
return verdict,w
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Algorithm 4.2 Supporting functions (in pseudo-code) for equivalence checking of
an RNN R and minimal DFA A, with initial partitioning p0. The main loop is in
check_equivalence, presented in algorithm 4.1.

Method update_records(q, h, qA, w):
Visitors(q)← Visitors(q) ∪ {h}
Path(h)← w
Association(q)← (qA)
Push(Unexplored,h)

Method handle_partition_conf(q, h, qA, q′
A):

find s ∈ Σ∗ s.t. fA(qA, s) 6= fA(q′
A, s)

for h′ ∈Visitors(q) do
w ← Path(h′)·s
if fR(w) 6= fA(w) then

return Reject, w
end

end
p← refine(p, h,Visitors(q)\{h})
return Restart_Exploration, ε

when handling a partitioning conflict.

• Association holds for every A-state q the L-state q′ ∈ QA visited in the parallel
exploration of A the first time that q was visited. If at any point q is visited while
the parallel exploration is on a different state q′′ 6= q′, a partitioning conflict is
triggered.

Note that finding the separating suffix for two inequivalent states q1, q2 of a given
automaton A can be done by a simple parallel BFS exploration of the states reachable
from q1 and q2 in A, continuing until two states with opposite classifications are found.

4.5 Abstraction and Refinement

Given a partitioning p, an R-state h, and a set of R-states H ⊆ S \ {h}, we must refine
p to obtain a new partitioning p′ satisfying:

1. for every h1 ∈ H, p′(h) 6= p′(h1), and

2. for every h1, h2 ∈ S, if p(h1) 6= p(h2) then p′(h1) 6= p′(h2).

The first condition separates (in the partitioning) the R-states that caused the parti-
tioning conflict leading to the refinement. The second condition maintains separations
made by earlier refinements, i.e., it prevents previously created abstract states from
being merged.
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We want to generalise the information given by h and H well, so as not to invoke
excessive refinements as new R-states are explored. Additionally, we would like to keep
the partitioning as small as possible, so that AR,p can be explored and compared to A
in reasonable time at every equivalence query.

To keep the partitioning small, we settle on a decision tree structure, in which each
refinement only splits the partition in which the conflict was recognised. Additionally,
seeing that in practice our equivalence checking method can overcome imperfect splits
between H and h by generating further splits if necessary, we relax the first condi-
tion. Specifically, we allow the classifiers splitting between H and h in the conflicated
partition to not do so perfectly, provided they separate at least some of H from h.

Our method is unaffected by the length of the R-states, and very conservative: each
refinement increases the number of A-states by exactly one. Our experiments show that
it is fast enough to quickly find counterexamples to proposed DFAs.

4.5.1 Initial Partitioning

In addition to a refinement method, our algorithm needs an initial partitioning p0 from
which to start the first equivalence query. As we wish to keep the abstraction as small
as possible, we begin with no state separation at all: p0 : h 7→ 0.

4.5.2 Decision-Tree based Partitioning, with Support Vector Refine-
ment

Let h ∈ S, H ⊂ S be the R-states with which a refinement was invoked. We know the
refinement is only applied to h, H satisfying p(h) = p(h′) for every h′ ∈ H. To keep
the partitioning small, we define a gentle refinement operation, in which for every call
we only split the single partition p(h). This approach avoids state explosion by adding
only one A-state per refinement.

Decision Tree It is natural to maintain a partitioning p refined over time in this way
as a decision tree, where each internal node tracks some single refinement made to p,
and its leaves are the current A-states of the abstraction.

SVM classifiers At every refinement, for the split of p(h), we would like to allocate
a region around the R-state h that is large enough to contain other R-states that
behave similarly, but separate from neighbouring R-states that do not. We achieve
this by fitting an SVM [BGV92] classifier with an RBF kernel12 to separate h from H

(splitting the partition p(h) in exactly two). The max-margin property of the SVM
ensures a large space around h, while the Gaussian RBF kernel allows for a non-linear
partitioning of the space. We use this classifier to split the A-state p(h), yielding a new
partitioning p′ with exactly one more A-state than p.

12While we see this as a natural choice, other kernels or classifiers may yield similar results. We do
not explore such variations in this work.
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Whenever the SVM successfully separates h from H entirely, this approach satis-
fies the requirements of refinement operations. Otherwise, the method fails to satisfy
condition 1 of the refinement operation. Nevertheless, the SVM classifier will always
separate at least one of the R-states h′ ∈ H from h, and later explorations can invoke
further refinements if necessary. In practice we see that this does not hinder the main
goal of the abstraction, which is finding counterexamples to equivalence queries.

Unlike mathematically defined partitionings such as the quantisation proposed by
[GMC+92], our abstraction’s storage is linear in the number of A-states it can map to;
and computing an R-state’s associated A-state may be linear in this number as well
(e.g. if the decision tree is a chain). Luckily, as this number of A-states also grows very
slowly (linearly in the number of refinements), this does not become a problem.

4.5.3 Practical Considerations

As the initial partitioning and the refinement operation are very coarse, our method
runs the risk of accepting very small but wrong DFAs early in the extraction.

To counter this, two measures are taken:

1. At the beginning of extraction, one accepting and one rejecting sequence are
provided to the teacher, and then checked as potential counterexamples at the
beginning of every equivalence query.13 Conversely, if these are not available,
equivalence queries are extended with n random samples for some small n (e.g.
n = 100) and range of lengths (e.g. 0-100): wheneverA and AR,p are equivalent, n

random samples are generated and checked as potential counterexamples (A(w) 6=
R(w)) before A can be accepted.

2. The first refinement is aggressive, generating a greater (but still manageable)
number of A-states than made with the main single-partition split approach used
for the rest of the extraction.

The first measure is taken specifically to prevent erronous termination of the extraction
on a single state automaton, and requires only two samples (if provided) or short
additional time before accepting an equivalence query.

The second measure prevents the extraction from too readily terminating on small
DFAs, by creating a (manageably) large AR,p that will hopefully capture a relatively
rich representation of the RNN. Our method for it is presented in Section 4.5.3.

Aggressive Difference-based Refinement

At the first refinement, instead of splitting p0(h) to separate h from all or most of
H using a single SVM, we split S in its entirety across multiple dimensions chosen
according to h and H. Specifically, we calculate the mean hm of H, find the d dimensions

13When using these in our experiments, we used the shortest possible examples, e.g., the empty
sequence and ) for the balanced parentheses language.
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with the largest gap between h and hm, and then split S along the middle of that gap
for each of the d dimensions.

The resulting partitioning can be comfortably stored in a decision tree of depth d.
It is intuitively similar to that of the quantisation suggested in [GMC+92], except that
it focuses only on the dimensions with the greatest deviation of values between the
states being split, and splits the ‘active’ range of values.

The value d may be set by the user, and increased if the extraction is suspected to
have converged too soon. We found that d = 10 generally provides a strong enough
initial partitioning of S, without making the abstraction too large for feasible explo-
ration.

4.6 Experimental Results

We first demonstrate the effectiveness of our method on LSTM- and GRU-acceptors14

trained on the Tomita grammars (1982), which have been used as benchmarks in pre-
vious automata-extraction work [WZO+17], and then on substantially more compli-
cated languages. We show the effectiveness of our refinement-based equivalence query
approach over that of plain random sampling and present cases in which our method
extracts informative DFAs where other approaches fail. In addition, for some seemingly
perfect networks, we find that our method quickly returns counterexamples represent-
ing deviations from the target language.

We clarify that when we refer to extraction time for any method, we consider
the entire process: from the moment the extraction begins, to the moment a DFA is
returned.15

Prototype Implementation and Settings We implemented all methods in
Python, using PyTorch [PGC+17] and scikit-learn [PVG+11]. For the SVM classi-
fiers, we used the SVC variant, with regularisation factor C = 104 to encourage perfect
splits and otherwise default parameters—in particular, the RBF kernel with gamma
value 1/(num features).

All training and extraction was done on amazon instances of type p3.2xlarge,
except for the BP and email classifier RNNs which were run on p2.xlarge.

14While many previous automata-extraction works evaluate on second-order RNNs [GSC+90], we
evaluate on the more popular LSTM and GRU architectures. We note that with the exception of
quantisation-based partitioning [OG96], which requires minor adaptation for unbounded RNN state
space, all of these methods—including our own—can be applied to any RNN architecture.

15Covering among others: abstraction exploration, abstraction refinements (including training SVM
classifiers), and L∗ refinements (for our method), and total time for all created DFAs (for k-means
clustering). Unless otherwise stated, this time is measured using the process_time method in python’s
time module.
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4.6.1 Languages

We consider the Tomita Grammars (4.6.4), and more complicated regular languages
defined by small, randomly sampled DFAs (4.6.4). We also consider the language of
legal email addresses (defined precisely in 4.6.9), and the language of balanced paren-
theses (BP): the set of sequences over ()a-z in which the parentheses are balanced,
e.g. a(a)ba and ()(()).

4.6.2 Sample Sets and Training

Tomita and Random Regular Languages We use train, validation, and test sets
of sizes 5000, 1000 and 1000 containing samples of lengths 1-100 (uniformly distributed).
To get ‘representative’ sample sets, we define a distribution over each DFA’s state
transitions favouring transitions which do not reduce the number of reachable states,16

sample from that distribution, and train the RNN to provide correct output for all
prefixes of every sample (as opposed to only the full samples).17 We train these RNNs
with the Adam optimiser, using initial learning rate 0.0003, an exponential learning
rate scheduler with gamma 0.9, and dropout 0.1. Each RNN was trained for up to 100
epochs on its train set, or until the validation set had 100% accuracy for 3 epochs in a
row, whichever came sooner.

Balanced Parentheses and Email Addresses We generated positive samples us-
ing tailored functions,18 and negative samples as a mix of both random sequences and
mutations of the positive samples.19 Here we train the RNN only on the full samples (as
opposed to classifying every prefix). We trained all networks to 100% accuracy on their
train sets, and considered only those that reached 99.9+% accuracy on a test set con-
sisting of up to 1000 uniformly sampled words of each of the lengths n ∈ 1, 4, 7, ..., 28.
The positive to negative sample ratios in the test sets were not controlled. The BP and
email train sets were randomly generated during training. The BP train set created
≈44600 samples, of which ≈60% were positive for each RNN, and reached balanced
parentheses up to depth 11. The email addresses train set created 40000 samples.

16(E.g., a transition into a sink reject state—unless it also comes from the sink reject state—reduces
the number of reachable states.)

17The intuition behind this choice is that every ‘irreversible’ transition in the DFA (e.g., the first 0
in a sample for Tomita 1, the language of sequences containing only 1) is delated, increasing the time
spent in the states before them, which might otherwise be underrepresented in the samples.

18For instance, a function that creates emails by uniformly sampling 2 sequences of length 2−8,
choosing uniformly from the options .com, .net, and all .co.XY for X,Y lowercase characters, and then
concatenating the three with an additional @.

19With mutations obtained by adding, removing, changing, or moving up to 9 characters.
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4.6.3 Details on Our Extraction (Practical considerations)

We apply the measures discussed in Section 4.5.3 as follows: First, for all networks,
we apply our method with aggressive initial refinement depth d = 10 (Section 4.5.3).
Second, we use additional counterexamples:

Additional Counterexamples For the Tomita and random DFA languages, during
extraction, we used random samples as additional potential counterexamples. Specifi-
cally, whenever an equivalence query was going to accept, we considered an additional
100 potential counterexamples, each generated as follows: first, we choose a length
from 0− 10 (uniformly), and then uniformly sample a sequence of that length over the
RNN input alphabet.

For BP and email addresses, during extraction, we presented each RNN along with
one positive and one negative sample to check for counterexamples at each equivalence
query. These were chosen as the shortest positive and shortest negative word in the
train set of the RNN, in particular: for BP, the initial samples were the empty sequence
(positive) and ) (negative), and for emails, the initial samples were 0@m.com (positive)
and the empty sequence (negative). For BP, these samples are covered anyway by
L∗’s initial membership queries, but for email addresses the positive sample helps ‘kick
off’ the extraction, preventing the method from accepting an automaton with a single
(rejecting) state.

No further parameter tuning was required to achieve our results.

4.6.4 Small Regular Languages

The Tomita Grammars

The Tomita grammars (1982) are the following 7 languages over Σ = {0, 1}:
1. 1∗

2. (10)∗

3. The complement of ((0|1)∗0)∗1(11)∗(0(0|1)∗1)∗0(00)∗(1(0|1)∗)∗, i.e.: all
sequences w which do not contain an odd series of 1s followed later by an odd
series of 0s

4. All words w not containing 000,
5. All w for which #0(w) and #1(w) are even (where #a(w) is the number of a’s in

w),
6. All w for which (#0(w)−#1(w)) ≡3 0, and
7. 0∗1∗0∗1∗.

They are the languages classically used to evaluate DFA extraction from RNNs.
We trained one 1-layer GRU network with hidden size 50 for each Tomita grammar

(7 GRUs in total), in the manner described in Section 4.6.2. In training, all but one
of the RNNs reached 3 consecutive epochs with 100% validation set accuracy within
10 epochs, and reached 100% test set accuracy. The 6th Tomita grammar was harder
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to train, with the RNN reaching only 78% validation accuracy after 100 epochs. As
our focus is on extraction rather than training, we repeated training on this language,
eventually obtaining an RNN with perfect train and validation accuracy for this lan-
guage as well (this time with initial learning rate 0.0004 and gamma 0.95). We then
applied our method to extract from the perfectly trained RNNs.

For each one, our method correctly extracted and accepted the target grammar in
under 1 second.

Random Small Regular Languages

Though the Tomita grammars are a popular language set for evaluating DFA extraction
from RNNs, they are quite simple: the largest Tomita grammars are still only 5-state
DFAs over a 2-letter alphabet. As our method performed so well on these grammars,
we expand to more challenging languages.

We considered randomly-generated minimal DFAs of varying complexity, specifi-
cally, DFAs with alphabet size and number of states (|Σ|, |Q|) = (3, 5), (5, 5) and (3, 10).
For each combination we randomly generated 10 minimal DFAs, making 30 DFAs over-
all. For each DFA we trained 6 2-layer RNNs: 3 GRUs and 3 LSTMs, each with hidden
state sizes ds = 50, 100 and 500, this makes 180 RNNs overall. The training method is
described in Section 4.6.2. We applied our extraction method to each of these RNNs,
with a time limit of 30 seconds (after which the last L∗ hypothesis is returned) and
initial split depth and counterexamples as described in Section 4.6.3. The results of
these experiments are shown in Table 4.1. Each row in the table represents the average
of 10 extractions.

Most extractions completed before the time limit, having reached equivalence.20

We compared the extracted automata against the networks on their training sets and
on 1000 randomly generated word samples for each of the word-lengths 10,50,100 and
1000. In all settings (hidden size, alphabet size, and DFA size) where the RNNs achieved
100% test set accuracy, our extraction obtained DFAs with perfect accuracy against
their RNNs. For two RNNs which reached 99% accuracy, our extraction achieved 99%
accuracy against the RNNs, and for the two RNNs with less than 99% accuracy our
extraction achieved on average ≥ 88% accuracy for all evaluation sets.

4.6.5 Comparison with a-priori Quantisation

In [GMC+92], Giles and colleagues suggested partitioning the network state space by
dividing each state dimension into q equal intervals, with q being the quantisation level.
We tested this method on each of our small regular language RNNs (Section 4.6.4), with

20Though this is not necessarily a guarantee of true equivalence, it does generally indicate strong
similarity.
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Extraction from LSTM Networks — Our Method
max RNN Average Extracted DFA Accuracy

ds |Σ| |QT | Time (s) |QA| #c-exs |c-ex| Acc. l=10 l=50 l=100 l=1000 Train
50 3 5 6.82 10.8 2.5 12 1.0 1.0 1.0 1.0 1.0 1.0
100 3 5 4.09 5.0 2.0 10 1.0 1.0 1.0 1.0 1.0 1.0
500 3 5 10.03 5.0 1.8 10 1.0 1.0 1.0 1.0 1.0 1.0
50 5 5 16.66 19.9 3.0 8 0.99 0.99 0.99 0.99 0.99 0.99
100 5 5 12.53 6.6 2.4 12 1.0 1.0 1.0 1.0 1.0 1.0
500 5 5 18.34 5.0 2.3 8 1.0 1.0 1.0 1.0 1.0 1.0
50 3 10 30.97 67.8 5.2 9 0.91 0.92 0.88 0.88 0.88 0.89
100 3 10 21.15 23.4 4.6 18 0.99 1.0 0.99 0.99 0.99 0.99
500 3 10 16.27 10.0 4.0 9 1.0 1.0 1.0 1.0 1.0 1.0

Extraction from GRU Networks — Our Method
max RNN Average Extracted DFA Accuracy

ds |Σ| |QT | Time (s) |QA| #c-exs |c-ex| Acc. l=10 l=50 l=100 l=1000 Train
50 3 5 4.85 5.0 2.0 13 1.0 1.0 1.0 1.0 1.0 1.0
100 3 5 3.22 5.0 2.0 10 1.0 1.0 1.0 1.0 1.0 1.0
500 3 5 6.29 5.0 1.8 10 1.0 1.0 1.0 1.0 1.0 1.0
50 5 5 15.98 11.8 2.8 16 1.0 1.0 1.0 1.0 1.0 1.0
100 5 5 7.22 5.0 2.4 18 1.0 1.0 1.0 1.0 1.0 1.0
500 5 5 12.3 4.9 2.1 8 1.0 1.0 1.0 1.0 1.0 1.0
50 3 10 29.09 76.2 5.6 11 0.94 0.97 0.92 0.92 0.92 0.93
100 3 10 13.88 23.3 4.7 20 1.0 1.0 1.0 1.0 1.0 1.0
500 3 10 12.01 10.0 3.8 9 1.0 1.0 1.0 1.0 1.0 1.0

Table 4.1: Results for DFA extracted using our method from 2-layer GRU and LSTM
networks with various state sizes, trained on random regular languages of varying sizes
and alphabets. Each row in each table represents 10 experiments with the same pa-
rameters (network hidden-state size ds, alphabet size |Σ|, and minimal target DFA size
|QT |). In each experiment, a random DFA is generated and an RNN is trained on
it, after which a DFA is extracted from and compared to the RNN. The column |QA|
represents the size of the final returned DFA, #c-exs describes how many counterex-
amples were used during extraction, max |c-ex| describes their maximum length, and
RNN Acc. is the accuracy of the trained RNN on its test set. Each column represents
the average of the 10 experiments, except for max |c-ex| which gives the overall maxi-
mum counterexample used across all RNNs in that row. Each extraction was run with
a time limit of 30 seconds, and whenever an extraction timed out the last automaton
proposed by L∗ was taken as the extracted automaton. For the accuracies on the dif-
ferent lengths, 1000 random words of each length were sampled and evaluated, and
for the accuracy on the training set all of the RNN’s training set was evaluated (i.e.,
comparing DFA against RNN).
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Extraction from LSTM Networks — Quantisation
RNN Extracted DFA Accuracy × Coverage

ds |QT | |Σ| Time (s) |QA| Acc. l=10 l=50 l=100 l=1000 Train
50 5 3 100.17 16868 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
100 5 3 237.06 40088 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
500 5 3 469.64 60295 1.0 1.0×1.0 1.0×0.53 1.0×0.42 1.0×0.21 1.0×0.59
50 5 5 283.83 29472 0.99 0.99×1.0 0.99×1.0 0.99×1.0 0.99×1.0 0.99×1.0
100 5 5 469.88 47873 1.0 1.0×1.0 1.0×0.94 1.0×0.91 1.0×0.79 1.0×0.95
500 5 5 503.68 39508 1.0 1.0×0.03 -1×0.0 -1×0.0 -1×0.0 1.0×0.08
50 10 3 434.75 77538 0.91 0.98×1.0 0.94×0.58 0.97×0.44 0.94×0.31 0.97×0.65
100 10 3 500.62 83402 0.99 1.0×1.0 1.0×0.46 1.0×0.32 1.0×0.02 1.0×0.55
500 10 3 502.84 64720 1.0 1.0×1.0 -1×0.0 -1×0.0 -1×0.0 1.0×0.12

Extraction from GRU Networks — Quantisation
RNN Extracted DFA Accuracy × Coverage

ds |QT | |Σ| Time (s) |QA| Acc. l=10 l=50 l=100 l=1000 Train
50 5 3 102.48 21359 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
100 5 3 239.93 49203 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
500 5 3 501.37 82933 1.0 1.0×1.0 1.0×0.22 1.0×0.13 1.0×0.0 1.0×0.35
50 5 5 335.37 42008 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
100 5 5 500.34 60089 1.0 1.0×0.98 1.0×0.77 1.0×0.67 1.0×0.41 1.0×0.8
500 5 5 502.31 49206 1.0 1.0×0.02 -1×0.0 -1×0.0 -1×0.0 1.0×0.08
50 10 3 500.42 100417 0.94 1.0×1.0 0.99×0.4 0.99×0.27 0.98×0.14 0.99×0.51
100 10 3 500.42 103488 1.0 1.0×1.0 1.0×0.51 1.0×0.34 1.0×0.06 1.0×0.58
500 10 3 501.93 82378 1.0 1.0×1.0 -1×0.0 -1×0.0 -1×0.0 1.0×0.12

Table 4.2: Results for DFA extracted using a simple partitioning of the RNN state
space, in which each state dimension is split into q = 2 equal segments (positive and
negative). The extractions were applied to the same RNNs as in Table 4.1, with each
row representing 10 experiments as before. |QA| again reports the (average) number of
states in the extracted DFAs, though this time it is rounded for clearer presentation.
The extractions were run with a time limit of 500 seconds. This time, instead of
reporting only the accuracy of the extracted DFAs against their RNNs on different
samples sets, we also report their coverage: the fraction of samples for which the DFAs
have a classification at all (i.e., do not have missing transitions). The accuracy is
computed only on covered sequences, and we write report the accuracy as −1 when
all extractions in the row have 0 coverage for that set. For example: 1.0×0.12 tells us
that only 12% of samples have full transitions in the extracted DFA, but that for those
12%, the DFA accuracy against the RNN is perfect.
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q = 2 and a time limit of 500 seconds to avoid excessive memory consumption.21

In many cases, we found that 500 seconds was not enough time for this method to
extract a complete DFA from our RNNs.22 To enable some comparison, we allow the
method to return incomplete DFAs, i.e. DFAs in which some transitions are missing,
and we move from evaluating just the accuracy of a DFA to evaluating both its accuracy
and its coverage, with coverage being the fraction of samples for which it has a full
transition path.

We provide the results of extracting with this method in Table 4.2, which uses the
exact same RNNs as in Table 4.1.

The extracted DFAs are very large—with some even having 100,000 states–and
yet their coverage of sequences of length 1,000 and even 100 tends to zero as the
RNN complexity (state size ds, or RNN target language complexity) increases. For
the covered sequences, the extracted DFA’s accuracy was often very high (99+%),
suggesting that quantisation—while impractical—is sufficiently expressive to describe a
network’s state space. However, it is also possible that the sheer size of the quantisation
(250 for our smallest RNNs, and more for others) simply allowed each explored R-state
its own A-state, giving high accuracy just by observation bias (only covered sequences
could have their accuracy checked).

This is in contrast to our method, which always returns complete DFAs,23 and
which consistently extracted accurate DFA from the same networks in a fraction of the
time and memory used by the plain quantisation approach. This is because our method
maintains from a very early point in extraction a complete DFA A that constitutes a
constantly improving approximation of the considered RNN.

4.6.6 Comparison with k-Means Clustering

Next, we implemented a simple k-means clustering and extraction approach and applied
it to the same networks from Section 4.6.4 with varying k.

Specifically, for each RNN, we sampled N = 5000 unique prefixes from its train
set, computed the states reached from them in the RNN, and used k-means clustering
to partition the state space according to those states for each of k = 1, 6, 11, ..., 31.24

We then mapped the transitions of each partitioning to create 7 potential DFAs, and
evaluated each one against the RNN on its 1000-sample test set to choose the best.

21LSTMs have unbounded state space, which makes quantisation challenging. Specifically for q = 2
however, we just split each dimension along 0.

22This is because the quantisation method, even for the smallest possible q (q = 2), generates far
more partitions than can be traversed within the time limit (qds where ds is the RNN state size, and
ds ≥ 50 in our case). Note that this is in contrast to our method: our method only applies this
quantisation method on d initial dimensions for user-defined d (typically ≤ 10), before continuing with
only very gentle refinements as needed.

23Provided L∗ manages to generate at least one equivalence query before the time limit, which we
observe to always happen in practice (usually taking ≤1 second).

24Using sklearn.cluster.KMeans.
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Extraction from LSTM Networks — k-means Clustering
RNN Average Extracted DFA Accuracy

ds |Σ| |QT | Time (s) |QA| k Acc. l=10 l=50 l=100 l=1000 Train
50 3 5 48.93 4.5 25.5 1.0 0.85 0.85 0.85 0.85 0.85
100 3 5 69.85 3.9 20.0 1.0 0.82 0.81 0.81 0.81 0.81
500 3 5 274.96 5.0 18.5 1.0 0.87 0.85 0.86 0.85 0.86
50 5 5 53.13 3.3 18.5 0.99 0.8 0.8 0.8 0.79 0.8
100 5 5 84.48 4.3 18.0 1.0 0.83 0.83 0.83 0.82 0.83
500 5 5 289.63 5.6 24.0 1.0 0.98 0.97 0.98 0.97 0.98
50 3 10 52.74 6.4 19.5 0.91 0.67 0.66 0.65 0.67 0.67
100 3 10 63.06 12.0 27.5 0.99 0.8 0.75 0.75 0.74 0.76
500 3 10 250.99 11.6 28.0 1.0 0.93 0.89 0.89 0.89 0.9

Extraction from GRU Networks — k-means Clustering
RNN Average Extracted DFA Accuracy

ds |Σ| |QT | Time (s) |QA| k Acc. l=10 l=50 l=100 l=1000 Train
50 3 5 21.95 5.0 14.5 1.0 0.99 1.0 1.0 1.0 1.0
100 3 5 24.89 4.9 12.0 1.0 1.0 1.0 1.0 1.0 1.0
500 3 5 85.46 5.0 13.5 1.0 0.99 1.0 1.0 1.0 1.0
50 5 5 22.74 5.4 20.0 1.0 1.0 1.0 1.0 1.0 1.0
100 5 5 29.13 5.0 18.5 1.0 1.0 1.0 1.0 1.0 1.0
500 5 5 91.68 5.1 19.0 1.0 1.0 1.0 1.0 1.0 1.0
50 3 10 27.98 12.4 28.5 0.94 0.87 0.84 0.84 0.83 0.85
100 3 10 27.15 10.5 31.0 1.0 0.96 0.94 0.94 0.94 0.94
500 3 10 92.63 10.0 28.5 1.0 0.99 0.98 0.99 0.98 0.99

Table 4.3: Results for DFA extracted using k-means clustering from the same 2-layer
GRU and LSTM networks considered in Table 4.1, i.e., each row represents the average
results of 10 experiments as before, and considers the exact same trained RNNs. The
extractions did not have a time limit, instead, the number of states sampled was set to
5000 and the k values considered were k = 1, 6, 11, ..., 31. The accuracies were evaluated
on the same sample sets as in Table 4.1.

k-means has a well defined and ‘reasonably quick’ stopping condition: the number
of RNN states visited, and the number of clusters to be created and traversed from
them, is given as input to the extraction.25 Hence for this extraction we do not use
a time limit, allowing the method to extract all of its potential DFAs in full, evaluate
them, and return the best DFA. As done for the other methods, we measure for k-means
the total time from beginning the extraction until a single final DFA is returned. In
particular, this covers sampling once all 5000 RNN states (generally <10 seconds),
making a k-state DFA from these RNN states by applying k-means clustering to them
(taking from <1 to ∼50 seconds for each k, depending on the states and on k), and
finally choosing the best DFA by evaluating on the test set (generally <10 seconds).
We note that the bulk of the extraction time is spent in clustering the sampled states
into different numbers of clusters k.

In Table 4.3 we report the results of these extractions. In particular, we report the

25This is in contrast to our method, which may continue to refine its hypothesis indefinitely without
ever reaching equivalence (consider for example an RNN that has learned a non-regular language), or
quantisation, which creates so many partitions in modern-sized architectures (250 even for our smallest
networks and quantisation level) that it cannot be used without adding some time or size limit.
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time (in seconds) spent on each full extraction, the number of clusters k used for each
best DFA, each DFA’s size |QA| after minimisation, and of course each extracted DFA’s
accuracy against the same sample sets as before (i.e., as in 4.1).

For the GRU networks trained on smaller DFAs (which reached 100% test-set ac-
curacy), k-means clustering is as successful as our method, often returning a DFA with
perfect or near-perfect accuracy against the target RNN. For the LSTMs and the larger
DFAs however, our method obtains far higher accuracy, and often in less time. The
difference in success on the LSTMs and GRUs is curious, we leave this question open
in this work.

4.6.7 Comparison with Random Sampling For Counterexample Gen-
eration

For 3 of the Tomita grammars (specifically, Tomitas 3,4, and 7), the first counterexam-
ple returned in our extraction (Section 4.6.4) was actually created by the initial random
sampling. Moreover, for all of the Tomita grammars, answering all equivalence queries
using a random sampler alone (with up to 1, 000 samples per query) was successful
at extracting the grammars from the RNNs, and this was also true for many of the
languages considered in Section 4.6.4. The termination is slightly slower than our own,
to allow for sampling many potential counterexamples before accepting the L∗ hypoth-
esis, but still fast enough to make random sampling seem appealing (the method spent
≈ 10 seconds on each Tomita grammar). Indeed, [MY18] even suggest such a method
in their recent work, analysing it from a PAC perspective.

Given this, the question may arise whether there is at all merit to the exploration
and refinement of abstractions of the network, as opposed to a simple random sampling
approach to counterexample generation for L∗ equivalence queries.

In this section we show the advantage of our method for counterexample generation,
through the example of balanced parentheses (BP): the language of sequences with cor-
rectly balanced parentheses over the alphabet ()a-z. BP is not a regular language,
but the attempt to approximate it with DFAs, and in particular the search for coun-
terexamples to proposed DFAs, proves informative. In particular, when sampling the
tokens with uniform distribution, the probability of randomly generating a sequence
with nested and correctly balanced parentheses over the BP alphabet is very low. This
prevents the random sampler from finding counterexamples to L∗’s proposed automata,
each of which accept balanced parentheses to a bounded depth (see Examples in Figure
4.1), highlighting the advantage of our approach.

We train one GRU and one LSTM network on BP, each with 2 layers and hidden
dimension 50. We extract DFAs from these networks using L∗, generating counterex-
amples once with our method and once with a random counterexample generator. The
random counterexample generator works as follows: for each equivalence query, it ran-
domly samples sequences over the input alphabet Σ until a counterexample (sample on

53



Accuracy on Train Set Max Nesting Depth
Network Our Method Random Our Method Random ds #Layers
GRU 99.98 87.12 8 2 50 2
LSTM 99.98 94.19 8 3 50 2

Table 4.4: Accuracy of extracted automata against their networks, which were trained
to 100% training accuracy on the balanced parentheses (BP) language. The compar-
isons were done on the training sets of the networks. The maximum nesting depth the
extracted automata reached while still behaving as BP is recorded (the GRU network
ultimately returned a more complex automaton than the one extracted from the LSTM
network, but this automaton no longer behaved as BP and so we have no reasonable
measure for its ‘depth’). The hidden size ds and the number of layers in each network
is also noted. (For the LSTM network, this is the size of both the memory and the cell
vectors, meaning the total hidden size of a single cell in this network is twice as big as
the value listed.)

which A and the RNN disagree) is found. In particular, for each length l = 1, 2, 3, ...

and increasing until a counterexample is found, it generates and compares up to 1000
random samples of length l, with uniform distribution.

We allowed each method 400 seconds26 to extract an automaton from networks
trained to 100% train set accuracy. The accuracy of these extracted automata against
the original networks on their training sets is recorded in Table 4.4, as well as the max-
imum parentheses nesting depth the L∗ proposed automata reached during extraction.

We list the counterexamples and counterexample generation times for each of the
BP network extractions in Table 4.5. Note the succinctness and the generation speed
of the counterexamples generated by our method: excluding two samples at the end
of the GRU extraction, they are clear of the ‘neutral’ tokens a-z and of repeating
parentheses (e.g., ()()), as these were not necessary to advance the automata learned
by L∗ (Figure 4.1). In contrast, the random sampling method has difficulty finding
legally balanced sequences, taking a long time to find counterexamples at all, and
including many ‘uninformative’ neutral tokens in its results.

The extracted DFAs themselves were also pleasing: each subsequent DFA proposed
by L∗ for this language was capable of accepting all words with balanced parentheses
of increasing nesting depth, as pushed by the counterexamples provided by our method
(Figure 4.1). In addition, for the GRU network trained on BP, our extraction method
managed to push past the limits of the network’s ‘understanding’—finding the point
at which the network begins to overfit to the particularly deeply-nested examples in its
training set, and extracting the slightly more complicated automaton seen in Figure
4.2.

26Timed using the clock() method from python’s time module.
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Refinement-based vs. Brute-Force Counterexample Generation
on the Balanced Parentheses Language

GRU
Refinement Based Brute Force

Counterexample Time (seconds) Counterexample Time (seconds)
)) 1.1 )) 0.4
(()) 1.2 (()i)ma 32.6
((())) 2.1
(((()))) 3.1
((((())))) 3.8
(((((()))))) 4.4
((((((())))))) 6.6
(((((((()))))))) 9.2
((((((((v()))))))) 10.7
((((((((a()z))))))))) 8.3

LSTM
Refinement Based Brute Force

Counterexample Time (seconds) Counterexample Time (seconds)
)) 1.4 )) 1.5
(()) 1.6 tg(gu()uh) 57.5
((())) 3.1 ((wviw(iac)r)mrsnqqb)iew 231.5
(((()))) 3.1
((((())))) 3.4
(((((()))))) 4.7
((((((())))))) 6.3
(((((((()))))))) 9.2
((((((((())))))))) 14.0

Table 4.5: Extraction of automata from GRU and LSTM networks trained to 100%
accuracy on the training set for the language of balanced parentheses over the 28-
letter alphabet a-z,(,). Each table shows the counterexamples and the counterexample
generation times for each of the successive equivalence queries posed by L∗ during
extraction, for both our method and a brute force approach. Generally, each successive
equivalence query from L∗ for either network was an automaton classifying the language
of all words with balanced parentheses up to nesting depth n, with increasing n. The
exception to this comes after the penultimate counterexample in the extraction from
the GRU network, in which a word with unbalanced parentheses was returned as a
counterexample to L∗ (whose automaton currently rejects it).
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Figure 4.1: Select automata of increasing size for recognising balanced parentheses over
the 28 letter alphabet a-z,(,), up to nesting depths 1 (flawed), 1 (correct), 2, and 4,
respectively. In this and in all following automata figures, the initial state is an octogon,
accepting states have a double border, and sink reject states (rejecting states whose
transitions all lead back to themselves) are not drawn.

4.6.8 Additional variations on our method

We show the necessity of the initial split and counterexamples for our method, the
effect of running extraction for a longer time (if it has not completed), and support the
decision to return the final L∗ hypothesis A as opposed to the final abstraction AR,p

whenever the extraction has not reached equivalence in time.

Removing the Initial Split Heuristics We run the extraction again on the same
RNNs as in Table 4.1, but this time setting the initial split depth to 1 and the number of
random samples before accepting a hypothesis to 0. We report the results in Table 4.6.
The average number of counterexamples (“#c-exs”) per extraction drops to almost 0 for
most settings, meaning the majority L∗ initial hypotheses are accepted immediately by
the method (without counterexamples). The number of states in the returned automata
is often smaller than in the target, and their accuracy drops significantly.

This shows that indeed our method must be coupled with some heuristics to prevent
acceptance in the early stages, during which both the abstraction and the L∗ hypothesis
only reflect the RNN’s classification on very short sequences, and have not yet diverged.

Timing out: Using the Abstraction, and Increasing the Time Limit When
we increase |Σ| and |Q| of our randomly generated target DFAs to 10, the training
routine used in this work is not sufficient for the RNNs with dimensions ds = 50 and
ds = 100 to train perfectly, and they reach on average < 0.8% test set accuracy on
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Figure 4.2: Automaton with vague resemblance to the BP automata of Figure 4.1,
but no longer representing a language of balanced parentheses up to a certain depth.
(Showing how a trained network may be overfitted past a certain sample complexity.)
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Extraction from LSTM Networks — Our Method (No Heuristics)
max RNN Average Extracted DFA Accuracy

ds |Σ| |QT | Time (s) |QA| #c-exs |c-ex| Acc. l=10 l=50 l=100 l=1000 Train
50 3 5 0.26 2.2 0.2 3 1.0 0.63 0.64 0.63 0.63 0.64
100 3 5 0.21 2.1 0.1 3 1.0 0.64 0.65 0.63 0.64 0.64
500 3 5 0.23 2.1 0.1 3 1.0 0.64 0.65 0.63 0.64 0.64
50 5 5 0.25 1.8 0.0 - 0.99 0.74 0.74 0.74 0.74 0.75
100 5 5 0.2 1.8 0.0 - 1.0 0.74 0.74 0.74 0.74 0.75
500 5 5 0.29 1.8 0.0 - 1.0 0.74 0.74 0.74 0.74 0.75
50 3 10 9.52 15.8 1.6 8 0.91 0.66 0.65 0.65 0.65 0.66
100 3 10 0.65 2.4 0.3 5 0.99 0.58 0.56 0.57 0.57 0.58
500 3 10 0.16 1.7 0.0 - 1.0 0.55 0.54 0.54 0.55 0.55

Extraction from GRU Networks — Our Method (No Heuristics)
max RNN Average Extracted DFA Accuracy

ds |Σ| |QT | Time (s) |QA| #c-exs |c-ex| Acc. l=10 l=50 l=100 l=1000 Train
50 3 5 0.16 2.1 0.1 3 1.0 0.64 0.65 0.63 0.64 0.64
100 3 5 0.16 2.0 0.0 - 1.0 0.66 0.67 0.66 0.66 0.67
500 3 5 0.2 2.0 0.0 - 1.0 0.66 0.67 0.66 0.66 0.67
50 5 5 0.19 1.8 0.0 - 1.0 0.74 0.74 0.74 0.74 0.75
100 5 5 0.18 1.8 0.0 - 1.0 0.74 0.74 0.74 0.74 0.75
500 5 5 0.21 1.8 0.0 - 1.0 0.74 0.74 0.74 0.74 0.75
50 3 10 0.13 1.7 0.0 - 0.94 0.55 0.55 0.54 0.55 0.56
100 3 10 0.16 1.7 0.0 - 1.0 0.55 0.54 0.54 0.55 0.55
500 3 10 0.31 2.5 0.3 7 1.0 0.59 0.59 0.59 0.59 0.6

Table 4.6: Extracting with our method from the same RNNs as in Table 4.1, but this
time without the initial heuristics as described in Section 4.6.3. The extraction time
is reduced significantly, along with the accuracy: L∗’s first hypotheses are frequently
very small, and without the aggressive initial state-splitting and random samples, the
abstraction is too coarse to find counterexamples.

their target languages. For these RNNs, we observe that our extraction method does
not reach equivalence in the provided time. In particular, the L∗ hypotheses grow very
large, and the extraction often times out while increasing the observation table: the
internal table of sequence labels maintained by L∗ between equivalence queries (i.e.,
the majority time is spent on refining A after each new counterexample).

In all of our experiments, whenever we run out of time, we return the last L∗

hypothesis A as the extracted automaton. In this section, we check how much this
hypothesis improves as we increase the time limit, and evaluate the option of returning
the last abstraction AR,p used by our method instead.

Table 4.7 shows a set of extractions from imperfectly trained RNNs, trained with
the same training routine and number of repetitions as before. We make 10 DFAs all
with |Q| = |Σ| = 10 and on each DFA train 4 2-layer RNNs: 2 GRUs and 2 LSTMs,
each with hidden state sizes ds = 50 and ds = 100. We then extract from each RNN
with 5 different time limits ranging from 50 to 1000 seconds. This means that overall
Table 4.7 shows results for 10 DFAs, 40 RNNs, and 200 extractions (each row represents
10 extractions).27

Alongside the details of the last L∗ hypothesis A, we also report the size of our final

27We ran each extraction in itself, for example each RNN’s 1000 second extraction was not merely
a continuation of its 50 second extraction but a full extraction in its own.
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Extraction from LSTM Networks — Our Method (Time Limits)
Time RNN A Accuracy AR,p Accuracy

ds Limit |QA| |QR,p| |p| #c-exs Acc. l=10 l=1000 Train l=10 l=1000 Train

50

50 116 157 1029 5.9 0.74 0.84 0.85 0.85 0.66 0.66 0.66
100 178 163 1031 6.8 0.74 0.86 0.86 0.87 0.66 0.67 0.66
200 300 160 1031 7.5 0.74 0.86 0.86 0.87 0.66 0.67 0.67
500 466 162 1031 8.0 0.74 0.88 0.88 0.88 0.65 0.66 0.66
1000 810 162 1032 9.1 0.74 0.89 0.9 0.9 0.65 0.66 0.66

100

50 113 304 1029 5.0 0.78 0.77 0.77 0.77 0.62 0.62 0.62
100 200 307 1031 6.0 0.78 0.79 0.79 0.79 0.61 0.62 0.62
200 313 305 1029 6.6 0.78 0.8 0.8 0.81 0.61 0.62 0.62
500 532 310 1032 7.4 0.78 0.81 0.81 0.81 0.61 0.62 0.62
1000 728 309 1032 7.6 0.78 0.81 0.82 0.83 0.61 0.62 0.62

Extraction from GRU Networks — Our Method (Time Limits)
Time RNN A Accuracy AR,p Accuracy

ds Limit |QA| |QR,p| |p| #c-exs Acc. l=10 l=1000 Train l=10 l=1000 Train

50

50 132 349 1031 6.3 0.75 0.86 0.86 0.86 0.68 0.69 0.7
100 210 348 1031 6.9 0.75 0.86 0.86 0.86 0.68 0.69 0.69
200 352 348 1030 7.6 0.75 0.87 0.87 0.87 0.68 0.69 0.69
500 540 349 1032 8.8 0.75 0.89 0.89 0.89 0.68 0.7 0.69
1000 830 353 1034 9.7 0.75 0.89 0.89 0.9 0.68 0.7 0.7

100

50 141 508 1031 5.0 0.79 0.76 0.76 0.77 0.61 0.63 0.62
100 174 506 1031 5.6 0.79 0.77 0.78 0.78 0.62 0.63 0.63
200 306 508 1030 6.5 0.79 0.78 0.78 0.79 0.61 0.62 0.63
500 567 522 1035 7.4 0.79 0.81 0.81 0.82 0.62 0.63 0.63
1000 780 517 1033 7.5 0.79 0.81 0.81 0.82 0.61 0.62 0.62

Table 4.7: Extracting with our method from 2-layer GRUs and LSTMs trained imper-
fectly on DFAs with size |Σ| = |Q| = 10, varying RNN hidden size (ds) and extraction
time limit. Each row represents the average of 10 experiments, with average DFA (|QA|,
|QAR,p

|) and final partitioning (|p|) sizes rounded for space. We report both the accu-
racy (against the RNN) of the final L∗ hypothesis, A, and the abstraction AR,p used
by the method to find counterexamples to each A. We see that the final L∗ hypothesis
is clearly the superior option when extraction has not terminated. Unfortunately, we
also see that the accuracy does not increase well with more time, this is because the
hypothesis generation (time from counterexample to new hypothesis) grows slower with
each iteration.
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partitioning p (i.e., number of partitions it divides the state space into), the size (after
minimisation) of the abstraction AR,p it defines, and the accuracy of AR,p against its
target RNN.

The results show clearly that the L∗ hypothesis is the preferable choice when the
extraction does not complete. Effectively, the partitioning p and abstraction AR,p it
defines act as a tool for refining the L∗ hypotheses, and not so much the other way
around.28

The results also show that, for these non-terminating extractions, it is ‘difficult’ to
improve beyond the automata reached in the early stages: increasing the extraction
time to 100, 200, and even 1000 seconds gives only a small increase in accuracy each
time. We also see that the number of counterexamples used per extraction grows very
slowly with the increase in time, i.e., more time does not significantly increase the
number of hypotheses presented by L∗ .

Analysing the time spent by the extraction reveals that L∗ gets ‘stuck’ refining
the large hypotheses it creates, generating many membership queries without reaching
new equivalence queries. The average equivalence query time across all experiments
is <1.5s, whereas the maximum hypothesis refinement time in each experiment grew
to over 10, 48, 60, 170 and 314 seconds for each of the time limits respectively.29 A
more efficient implementation of L∗ , or possibly an approximation of it, would be an
important step towards scaling this method.

4.6.9 Discussion

Adversarial Inputs

Balanced Parentheses Excitingly, the penultimate counterexample returned by our
method during the extraction of balanced parentheses (BP) in Section 4.6.7 is an adver-
sarial input: a sequence with unbalanced parentheses that the network accepts (despite
its target language accepting only sequences with balanced parentheses). This input
is found in spite of the network’s seemingly perfect behaviour on its set of 44000+
training samples. Note that the random sampler did not manage to find such samples.

Inspecting the extracted automata indeed reveals an almost-but-not-quite correct
DFA for the BP language (Figure 4.2). The RNN overfit to random peculiarities in

28This may be because, whenever the equivalence checking finds a disagreement, it first checks for
the possibility of a counterexample to L∗ before checking whether the abstraction needs to be refined.
However, the difference may also come through the more long-sighted nature of L∗ : internally, L∗

maintains a growing list of prefixes and suffixes, all combinations of which its hypotheses have to
classify correctly. In contrast, traversing a partitioning of the state space only looks as far as the
immediate classification and transitions of each visited partition. L∗’s advantage here is also its curse:
learning a DFA with L∗ has polynomial time complexity in the size of the DFA, whereas traversing a
partitioning is linear in the number of partitions.

29I.e., for example, each one of the 1000 second extractions spent at least 314 seconds on at least
one hypothesis refinement.
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the training data and did not learn the intended language, and our extraction method
managed to discover and highlight an example of this ‘incorrect’ behaviour.

Email Addresses For a seemingly perfect LSTM-acceptor trained on the regular
expression

[a-z][a-z0-9]*@[a-z0-9]+.(com|net|co.[a-z][a-z])$

(simple email addresses over the 38 letter alphabet {a-z,0-9,@,.}) to 100% accuracy on
a 40,000 sample train set and a 2,000 sample test set, our method quickly returned the
counterexamples seen in Table 4.8, showing clearly words that the network misclassified
(e.g., 25.net). We ran extraction on this network for 400 seconds, and while we could
not extract a representative DFA in this time,30 our method did show that the network
learned a far more elaborate (and incorrect) function than needed. In contrast, given
a 400 second overall time limit, the random sampler did not find any counterexample
beyond the provided one.

We note that our implementation of k-means clustering and extraction had no
success with this network, returning a completely rejecting automaton (representing
the empty language), despite trying k values of up to 100 and using all of the network
states reached using a train set with a 50:50 ratio between positive and negative samples.

Beyond demonstrating the capabilities of our method, these results also highlight
the brittleness in generalisation of trained RNNs, and suggest that evidence based on
test-set performance should be interpreted with extreme caution. This reverberates
the results of ([GS16]), who trained a neural architecture based on a multi-layer LSTM
to mimic a finite state transducer (FST) for number normalisation. They showed that
the RNN-based network, trained on 22M samples and validated on a 2.2M sample
development set to 0% error on both, still had occasional errors (though with error
rate < 0.0001) when applied to a 240,000 sample blind test set.

Limitations and Discussion

L∗ Optimisation One limitation of the method shown in this work is the polynomial
time complexity of L∗, which becomes a significant issue as the extracted DFA grows
(see Section 4.6.8, Timing out). Applying our method with more efficient variants of
L∗ , such as the TTT algorithm presented by [IHS14], may yield better results.

L∗ and Noise Whenever applied to an RNN that has failed to generalise properly
to its target language, our method soon finds several adversarial inputs, and begins to
build very large DFAs. As noted above, to L∗’s polynomial complexity and intolerance
to noise, this quickly becomes extremely slow.31

30A 134-state DFA A was proposed by L∗ after 178 seconds, and the next refinement to A (initi-
ated 4.43 seconds later) timed out. The accuracy of the 134-state DFA on the train set was nearly
random. We suspect that the network learned such a complicated behaviour that it simply could not
be represented by any small DFA.

31This happened for example to our balanced-parentheses LSTM network, which timed out during
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Counter- Network Target
example Time (s) Classification Classification
0@m.com provided

√ √

@@y.net 2.93 × ×
25.net 1.60

√
×

5x.nem 2.34
√

×
0ch.nom 8.01 × ×
9s.not 3.29 × ×
2hs.net 3.56

√
×

@cp.net 4.43 × ×

Table 4.8: Counterexamples generated during extraction from an LSTM email-address
network with 100% train and test accuracy. Examples of the network deviating from
its target language are shown in bold.

Of course by the nature of L∗, any complexity in the final returned automaton is
only a result of the inherent complexity of the RNN’s learned behaviour, and so we
may say that this result is not necessarily incorrect. Nevertheless, it limits us, and
seeking a way to recognise and overcome ‘noise’ in the given network’s behaviour is an
interesting avenue for future work.

Adversarial Inputs On the bright side, this same limitation does demonstrate the
ease with which our method identifies imperfectly trained networks. These cases are
annoyingly frequent: for many RNN-acceptors with 100% train and test accuracy on
large test sets, our method was able to find many simple misclassified examples (Section
4.6.9).

Note on Heuristics In Section 4.2, we note that existing works consider multiple
RNNs, and then must choose the best according to a heuristic. Our method can also
be seen as considering multiple DFAs and abstractions, with the equivalence query being
the ‘heuristic’ deciding whether to terminate or consider more DFAs/abstractions. We
highlight here our differences. First, in our method, the DFAs considered are always
minimal (thanks to L∗), and the abstractions used can be much smaller than in other
methods. In particular the abstractions can be small because they are dynamically
refined by the method on an as-needed basis, and so can afford to be very coarse:
‘missed partitions’ are discovered and fixed automatically by the method. Secondly,
even when the refinement eventually creates a very large abstraction, the equivalence
query is applied ‘on-the-fly’, meaning it can cut off and return counterexamples/refine
the abstraction even before AR,p has been fully mapped.

4.7 Learning from Only Positive Samples

Thus far, the method presented here can be used to learn a DFA from a set of positive
and negative samples: we train an RNN-acceptor to generalise from them, and then

L∗ refinement after the last counterexample.
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extract a DFA from it.
However, we can also use our method to learn a DFA from positive samples only,

by training an RNN using a language-modelling objective, and then extracting from an
RNN-acceptor interpretation of it. Such RNNs are trained only on positive samples,
attempting to model their distribution rather than classify what is or isn’t in the
language:

A language-model RNN (LM-RNN) over an alphabet Σ and end-of-sequence symbol
$ /∈ Σ is an RNN with classification component fR : SR → [0, 1]Σ∪{$} defining for
every RNN-state a distribution over Σ∪{$}. An LM-RNN effectively defines for every
sequence w ∈ Σ∗ and token σ ∈ Σ ∪ {$} the probability of sampling σ after seeing w:
P (σ|w) = fR(ĝR(w))(σ).

LM-RNNs can be interpreted as classifiers by taking a threshold t and defining
that they accept exactly the set of sequences w = w1w2...wn ∈ Σ∗ which satisfy:
1. P ($|w) ≥ t, and 2. for every strict prefix w′ = w1w2...wi, i < n of w, P (wi+1|w′) ≥ t.
This interpretation recently appears as locally ϵ-truncated support in the work of
[HHG+20], with ϵ = t.

LM-RNNs can therefore be adapted for extraction as classifiers by defining each
of their states as accepting or rejecting according to the probability they assign to $,
and introducing an artificial sink-reject state v32 that is entered whenever a sequence
transitions through a token with too low probability. Formally:

Making an RNN acceptor Let R be an LM-RNN with reachable state space S ⊊ Rds ,
initial state h0,R ∈ S, update function gR, and classification function fR. Let t ∈ [0, 1]
be a threshold and let v ∈ Rds\S be a vector that cannot be reached in R from any input
sequence.33 To create an RNN-acceptor R′ from R, we build the components h′

0,R =

h0,R, f ′
R(s) =

Acc : fR(s)($) ≥ t

Rej : else
, and g′

R(s, σ) =

v : fR(s)(σ) < t or s=v

gR(s, σ) : else
.

The new RNN-acceptor R′ can now be passed directly to our algorithm for extrac-
tion.

When the language is ‘small’—in the sense that uniformly sampled sequences are
likely to be rejected—sampling sequences according to the RNN’s distribution is likely
to hit a sample that has not yet been considered by L∗. Hence here random sampling
according to the RNN’s distribution can be a useful augmentation to the equivalence
query—though this can also create overly long counterexamples (Section 4.7.1).

This approach—training an LM-RNN, adapting it as a classifier, and then extracting
from it with the method presented in this work—has been recently applied by [YW21]
to elicit a sequence of DFAs from trained LM-RNNs, as part of a process for learning
context free grammars from trained RNNs.

32I.e., an externally maintained state v /∈ SR.
33For most RNN architectures, finding such a vector v is easy from the architecture definition. For

instance, for LSTMs and GRUs, v = 2̄ is sufficient: both have at least some of their state dimensions
bound to the range [−1, 1].
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Note Extracting from LM-RNNs requires some hyperparameter tuning, as changing
the threshold t changes the set of sequences accepted by R′.

4.7.1 Proof of Concept

We provide a small number of example extractions from LM-RNNs trained on non-
regular languages, observing the ability of the method to generate increasingly ‘com-
plex’ DFA approximations of the targets. More examples are also present in [YW21].

anbn

We train a 2-layer LSTM-based LM-RNN with hidden dimension ds = 50 on positive
samples from the language anbn = {aibi | i ∈ N}.34 We then interpret it as an RNN-
acceptor as described above, and extract from it using our extraction method, with
t = 0.1 and a time limit of 400 seconds.

As expected, the extraction generates a series of DFA approximations of the non-
regular target language, we present some of these in Figure 4.3. The extraction ulti-
mately reached DFAs approximating anbn up to n ≤ 20 before timing out, with the
majority of time spent on refining the L∗ hypotheses, which grew slower as the DFA
grew: the final hypotheses returned by L∗ took 46, 54, and 63 seconds each to generate
after their ‘prompting’ counterexamples, and the next L∗ refinement after them also
timed out after 53 seconds (meanwhile, each of the counterexamples took < 5 seconds
to generate). This result suggests that this method may benefit from applying a more
efficient implementation of L∗, such as the TTT algorithm of [IHS14].

Dyck-3

We consider the language Dyck-3 with 3 additional neutral tokens, i.e.: correctly bal-
anced sequences over the alphabet {}()[]abc. For example, {}a(b[])c is in the lan-
guage, but ([)] and ()) are not.

We use a 2-layer GRU with dimension 50, and train it as a language model on 50000
non-unique samples of lengths 1-100 from Dyck-3 for 20 epochs, reaching a train, test,
and validation cross-entropy loss of ≈1.7. We interpret the GRU as a classifier using
rejection threshold t = 0.01, and extract from it using our method with a time limit of
400 seconds and initial split depth d = 10.35

The abstraction-based equivalence query provides L∗ with counterexamples teach-
ing it new ‘parantheses nestings’ one at a time,36 creating in 128 seconds the Dyck-3

3420 epochs on 5000 non-unique samples of average length 50.
35We also augmented the equivalence queries with random counterexample generation using LM-

sampling, to be considered before accepting any DFA. However, this was never used: our abstraction-
based method rejected every hypothesis before reaching this stage.

36The counterexamples are: 1. () 2. {} 3. [} 4. (()) 5. ({}) 6. ([]) 7. {()} 8. {{}} 9. {[]} 10. [{}]
11. ((())) 12. (({})) 13. ({[]}) 14. ([{}]) 15. {([])} 16. {{[]}} 17. {[[]]} 18. [(){}] 19. ([()])
20. [(())] 21. [[]()] 22. (([])) 23. ([[]]) 24. [([])] 25. [[()]] 26. [[{}]] 27. [[[]]] 28. (((())))
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Figure 4.3: Automata approximating the language anbn up to different lengths, ex-
tracted from an RNN trained on only positive examples. The extraction created ‘cor-
rect’ approximations up to n = 20 before reaching the time limit.

Figure 4.4: An automaton approximating the language Dyck-3 with neutral tokens a-c,
obtained in 128 seconds as the 24th hypothesis during extraction from a GRU trained
on only positive samples from the language. The automaton correctly recognises many
(but not all) correct parenthesis nestings up to depth n = 3, for example, it accepts the
sequence {([])}() but not the sequence ({()}). It rejects the empty sequence, this
is an artefact of the RNN’s behaviour.
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Figure 4.5: The next hypothesis presented by L∗ after receiving the counterexample
[([])] to the DFA shown in 4.4, while extracting from our LM-GRU trained on Dyck-3.
While the previous hypotheses reflected clear (regular) subsets of Dyck-3 with bounded
depth, now L∗ has found several ‘irregularities’ in the RNN, and encoded them into a
new hypothesis which is much larger and more complicated than those before it.
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approximation A24 shown in Figure 4.4 (the 24th hypothesis created during the extrac-
tion). Each of the counterexamples, including those after A24, takes under 3 seconds
to find.

After the counterexample [([])] returned for A24 however, L∗ begins to find irreg-
ularities in the LSTM’s behaviour, and jumps from the 26 state DFA shown in Figure
4.4 to the 47 state DFA shown in Figure 4.5. The new hypothesis shows us how the
GRU has overfitted to the training data. For example, one of the shortest sequences
reaching the ‘new’ accepting state 41 is [([a]]), and indeed checking the GRU shows
that it accepts this sequence despite it being incorrectly balanced. Following the tran-
sitions for this sequence, the GRU’s ‘first mistake’ appears to be on the neutral tokens
of state 9, which instead of sitting on a self-loop now go to the different state 22.

Up until A24, the L∗ refinement time (time from counterexample to next equivalence
query) was < 10 seconds per hypothesis. The next refinement, creating A25, takes 68
seconds however, and from there all remaining refinements take 15− 35 seconds each.

Sampling the LM-RNN for Equivalence Queries

Long Samples We take the same Dyck-3 RNN as above and again use L∗ to ex-
tract from it for 400 seconds, but this time with the equivalence query based only on
comparison of samples generated from the RNN’s distribution. Specifically, for each
equivalence query, we sample sequences up to length 100 indefinitely (as the focus
here is finding counterexamples, not reaching equivalence quickly) with tokens chosen
according to the GRU’s next-token distribution.

Sampling the GRU is effective for creating well balanced nested parentheses, and
the method rejects the initial hypotheses of L∗ (in which the parentheses are not yet
nested), in under one second. The counterexample has 57 tokens and is:

{c{}{(b[]){()}c}[]()}({{{}c}ccca}cc[]){b}bbb[]abc[]a[c]()
which reaches a maximum nesting depth of 4 and shows multiple parentheses nesting

combinations. Unfortunately, a second equivalence query is never made before reaching
the time limit. The length of the counterexample slows L∗ down (it has polynomial
time complexity in, among other things, the length of its counterexamples), and—
possibly more significantly—it is possible that this counterexample has led L∗ to many
‘incorrect’ behaviours in the RNN, forcing it to begin working on a large DFA covering
all of them at a very early stage in the extraction.

29. ((([]))) 30. (([{}])) 31. (([[])]] 32. (()[]). Excluding the third counterexample [}, which
teaches L∗ of an incorrectly balanced pair that must be rejected, each counterexample describes a new
way to nest parentheses pairs in each other, and is accepted by the RNN. Unfortunately towards the
end errors show up, and we see in the 30th counterexample an incorrectly balanced sequence that the
RNN accepts.
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Figure 4.6: The last DFA extracted from the LM-GRU trained on Dyck-3 with neutral
tokens a-c, when extracting with L∗ for 400 seconds and only using LM-sampling
with maximum length 10 for the equivalence queries. It is not a subset of Dyck-3, for
example, it accepts the sequence ]]]}. This seems to be an oversight in the extraction:
the RNN does not accept this sequence, and an appropriate counterexample would fix
this.

.
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LM Sampling: Short Samples A second attempt at extraction with RNN-sampled
counterexamples,37 this time with maximum sample length 10, creates 23 DFAs. The
last of these is shown in Figure 4.6.

The equivalence queries are fast (the first ten take <1 second each, and all take
<6 seconds),38 though the extraction does not as clearly resemble Dyck-3: the DFAs
have irregularities relative to those obtained with the abstraction-based L∗ extraction
method. We do not know whether this is due to the random sampling missing key
counterexamples (such as the [} counterexample in Section 4.7.1) or a reflection of
unwanted behaviours in the RNN, but initial checks of misclassified sequences in the last
DFA of this extraction show that the RNN actually classifies them correctly, suggesting
that at least some key counterexamples could help ‘clean’ these DFAs.

37Again with reject threshold t = 0.01 and time limit 400s.
38The counterexamples are (examples rejected by the RNN are marked with R): 1. R: ab(){c}[(c

2. {()}[ac[]] 3. [{}] 4. a()b([][]) 5. {a}({})ba 6. c{{}c}b(b) 7. b[({})b()] 8. R: b[[][[]{}]
9. a([a[]]()) 10. {()[][]}a 11. [acaa{()}] 12. b[{{()}}]a 13. ((()))c{} 14. R: (c)ca[{[]}
15. {[[]]}[]ca 16. (({})) 17. ([()]) 18. (({}b[])c) 19. ({}(){()}) 20. []{bb({})} 21. [(())c]a
22. cbb[[()c]] 23. a[(a[])]ab. The last counterexample is given only 5 seconds before the time limit,
and so the 24th equivalence query is not reached.
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Chapter 5

On the Practical Computational
Power of Finite Precision RNNs
for Language Recognition

5.1 Introduction

Recurrent Neural Network (RNNs) emerge as very strong learners of sequential data.
A famous result by Siegelmann and Sontag [SS92; SS94], and its extension in [Sie99],
demonstrates that an Elman-RNN [Elm90] with a sigmoid activation function, rational
weights and infinite precision states can simulate a Turing-machine in real-time, making
RNNs Turing-complete. Recently, Chen et al [CGKM17] extended the result to the
ReLU activation function. However, these constructions (a) assume reading the entire
input into the RNN state and only then performing the computation, using unbounded
time; and (b) rely on having infinite precision in the network states. As argued by Chen
et al [CGKM17], this is not the model of RNN computation used in NLP applications.
Instead, RNNs are often used by feeding an input sequence into the RNN one item at
a time, each immediately returning a state-vector that corresponds to a prefix of the
sequence and which can be passed as input for a subsequent feed-forward prediction
network operating in constant time. The amount of tape used by a Turing machine
under this restriction is linear in the input length, reducing its power to recognition
of context-sensitive language. More importantly, computation is often performed on
GPUs with 32bit floating point computation, and there is increasing evidence that
competitive performance can be achieved also for quantised networks with 4-bit weights
or fixed-point arithmetics [HCS+16]. The construction of [Sie99] implements pushing
0 into a binary stack by the operation g ← g/4 + 1/4. This allows pushing roughly
15 zeros before reaching the limit of the 32bit floating point precision. Finally, RNN
solutions that rely on carefully orchestrated mathematical constructions are unlikely to
be found using backpropagation-based training.
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(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 5.1: Activations—c for LSTM and h for GRU—for networks trained on anbn

and anbncn. The LSTM has clearly learned to use an explicit counting mechanism, in
contrast with the GRU.

In this work we restrict ourselves to input-bound recurrent neural networks with
finite-precision states (IBFP-RNN), trained using back-propagation. This class of net-
works is likely to coincide with the networks one can expect to obtain when training
RNNs for NLP applications. An IBFP Elman-RNN is finite state. But what about
other RNN variants? In particular, we consider the Elman RNN (SRNN) [Elm90] with
squashing and with ReLU activations, the Long Short-Term Memory (LSTM) [HS97]
and the Gated Recurrent Unit (GRU) [CvG+14; CGCB14a].

The common wisdom is that the LSTM and GRU introduce additional gating com-
ponents that handle the vanishing gradients problem of training SRNNs, thus stabilis-
ing training and making it more robust. The LSTM and GRU are often considered as
almost equivalent variants of each other.

We show that in the input-bound, finite-precision case, there is a real difference
between the computational capacities of the LSTM and the GRU: the LSTM can easily
perform unbounded counting, while the GRU (and the SRNN) cannot. This makes the
LSTM a variant of a k-counter machine [FMR68], while the GRU remains finite-state.
Interestingly, the SRNN with ReLU activation followed by an MLP classifier also has
power similar to a k-counter machine.

These results suggest there is a class of formal languages that can be recognised
by LSTMs but not by GRUs. In Section 5.5, we demonstrate that for at least two
such languages, the LSTM manages to learn the desired concept classes using back-
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propagation, while using the hypothesised control structure. Figure 5.1 shows the
activations of 10-d LSTM and GRU trained to recognise the languages anbn and anbncn.
It is clear that the LSTM learned to dedicate specific dimensions for counting, in
contrast to the GRU.1

5.2 The RNN Models

In this work we will discuss several different RNN architectures, we elaborate on their
specific definitions here. Recall that the recursive component of the RNN—which
receives a current RNN state and input token, and produces the next state—is referred
to as gR

Elman-RNN (SRNN) In the Elman-RNN [Elm90], also called the Simple RNN
(SRNN), the function gR takes the form of an affine transform followed by a tanh
nonlinearity:

ht = tanh(Wxt + Uht−1 + b) (5.1)

Elman-RNNs are known to be at-least finite-state. Siegelmann proved that the
tanh can be replaced by any other squashing function without sacrificing computational
power [Sie96].

IRNN The IRNN model, explored by [LJH15], replaces the tanh activation with a
non-squashing ReLU:

ht = max(0, (Wxt + Uht−1 + b)) (5.2)

The computational power of such RNNs (given infinite precision) is explored in
[CGKM17].

Gated Recurrent Unit (GRU) In the GRU [CvG+14], the function gR incorpo-
rates a gating mechanism, taking the form:

zt = σ(W zxt + U zht−1 + bz) (5.3)

rt = σ(W rxt + U rht−1 + br) (5.4)

h̃t = tanh(W hxt + Uh(rt ◦ ht−1) + bh) (5.5)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t (5.6)

Where σ is the sigmoid function and ◦ is the Hadamard product (element-wise product).

1Is the ability to perform unbounded counting relevant to “real world” NLP tasks? In some cases
it might be. For example, processing linearised parse trees [VKK+15; CC16; AG17] requires counting
brackets and nesting levels. Indeed, previous works that process linearised parse trees report using
LSTMs and not GRUs for this purpose. Our work here suggests that this may not be a coincidence.
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Long Short Term Memory (LSTM) In the LSTM [HS97], gR uses a different
gating component configuration:

ft = σ(W f xt + Uf ht−1 + bf ) (5.7)

it = σ(W ixt + U iht−1 + bi) (5.8)

ot = σ(W oxt + Uoht−1 + bo) (5.9)

c̃t = tanh(W cxt + U cht−1 + bc) (5.10)

ct = ft ◦ ct−1 + it ◦ c̃t (5.11)

ht = ot ◦ g(ct) (5.12)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least as strong as the SRNN: by setting
the gates of the GRU to zt = 0 and rt = 1 we obtain the SRNN computation. Similarly
by setting the LSTM gates to it = 1,ot = 1, and ft = 0. This is easily achieved by
setting the matrices W and U to 0, and the biases b to the (constant) desired gate
values.

Thus, all the above RNNs can recognise finite-state languages.

5.3 Power of Counting

Power beyond finite state can be obtained by introducing counters. Counting languages
and k-counter machines are discussed in depth in [FMR68]. When unbounded compu-
tation is allowed, a 2-counter machine has Turing power. However, for computation
bound by input length (real-time) there is a more interesting hierarchy. In particular,
real-time counting languages cut across the traditional Chomsky hierarchy: real-time
k-counter machines can recognise at least one context-free language (anbn), and at least
one context-sensitive one (anbncn). However, they cannot recognise the context free
language given by the grammar S → x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a simplified variant of k-counter machines
(SKCM). A counter is a device which can be incremented by a fixed amount (Inc),
decremented by a fixed amount (Dec) or compared to 0 (Comp0). Informally,2 an
SKCM is a finite-state automaton extended with k counters, where at each step of the
computation each counter can be incremented, decremented or ignored in an input-
dependent way, and state-transitions and accept/reject decisions can inspect the coun-
ters’ states using Comp0. The results for the three languages discussed above hold for
the SKCM variant as well, with proofs provided in Section 5.7.

2Formal definition is given in Section 5.7.
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5.4 RNNs as SKCMs

In what follows, we consider the effect on the state-update equations on a single di-
mension, ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by designating k dimensions of the memory
cell ct as counters. In non-counting steps, set it = 0, ft = 1 in Equations 8 and 9. In
counting steps, the counter direction (+1 or -1) is set in c̃t (Equation 11) based on the
input xt and state ht−1. The counting itself is performed in Equation 12, after setting
it = ft = 1. The counter can be reset to 0 by setting it = ft = 0.

Finally, the counter values are exposed through ht = otg(ct), making it trivial to
compare the counter’s value to 0.3

We note that this implementation of the SKCM operations is achieved by saturating
the activations to their boundaries, making it relatively easy to reach and maintain in
practice.

SRNN The finite-precision SRNN cannot designate unbounded counting dimensions.
The SRNN update equation is:

ht = tanh(Wx + Uht−1 + b)

ht[i] = tanh(
dx∑

j=1
Wijx[j] +

dh∑
j=1

Uijht−1[j] + b[i])

By properly setting U and W, one can get certain dimensions of h to update ac-
cording to the value of x, by ht[i] = tanh(ht−1[i] + wix + b[i]). However, this counting
behaviour is within a tanh activation. Theoretically, this means unbounded counting
cannot be achieved without infinite precision. Practically, this makes the counting
behaviour inherently unstable, and bounded to a relatively narrow region. While the
network could adapt to set w to be small enough such that counting works for the
needed range seen in training without overflowing the tanh, attempting to count to
larger n will quickly leave this safe region and diverge.

3Some further remarks on the LSTM: LSTM supports both increment and decrement in a single
dimension. The counting dimensions in ct are exposed through a function g. For both g(x) = x

and g(x) = tanh(x), it is trivial to do compare 0. Another operation of interest is comparing two
counters (for example, checking the difference between them). This cannot be reliably achieved with
g(x) = tanh(x), due to the non-linearity and saturation properties of the tanh function, but is possible
in the g(x) = x case. LSTM can also easily set the value of a counter to 0 in one step. The ability to
set the counter to 0 gives slightly more power for real-time recognition, as discussed in [FMR68].

Relation to known architectural variants: Adding peephole connections [GS00] essentially sets
g(x) = x and allows comparing counters in a stable way. Coupling the input and the forget gates
(it = 1 − ft) [GSK+17] removes the single-dimension unbounded counting ability, as discussed for the
GRU.
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IRNN Finite-precision IRNNs can perform unbounded counting conditioned on input
symbols. This requires representing each counter as two dimensions, and implementing
Inc as incrementing one dimension, Dec as incrementing the other, and Comp0 as
comparing their difference to 0. Indeed, Appendix A in [CGKM17] provides concrete
IRNNs for recognising the languages anbn and anbncn. This makes IBFP-RNN with
ReLU activation more powerful than IBFP-RNN with a squashing activation. Practi-
cally, ReLU-activated RNNs are known to be notoriously hard to train because of the
exploding gradient problem.

GRU Finite-precision GRUs cannot implement unbounded counting on a given di-
mension. The tanh in Equation 6 combined with the interpolation (tying zt and 1− zt)
in Equation 7 restricts the range of values in h to between -1 and 1, precluding un-
bounded counting with finite precision. Practically, the GRU can learn to count up to
some bound m seen in training, but will not generalise well beyond that.4 Moreover,
simulating forms of counting behaviour in Equation 7 require consistently setting the
gates zt, rt and the proposal h̃t to precise, non-saturated values, making it much harder
to find and maintain stable solutions.

Summary We show that LSTM and IRNN can implement unbounded counting in
dedicated counting dimensions, while the GRU and SRNN cannot. This makes the
LSTM and IRNN at least as strong as SKCMs, and strictly stronger than the SRNN
and the GRU.5

5.5 Experimental Results

Can the LSTM indeed learn to behave as a k-counter machine when trained using
backpropagation? We show empirically that:

1. LSTMs can be trained to recognise anbn and anbncn.

2. These LSTMs generalise to much higher n than seen in the training set (though
not infinitely so).

3. The trained LSTM learn to use the per-dimension counting mechanism.

4One such mechanism could be to divide a given dimension by k > 1 at each symbol encounter,
by setting zt = 1/k and h̃t = 0. Note that the inverse operation would not be implementable, and
counting down would have to be realised with a second counter.

5One can argue that other counting mechanisms—involving several dimensions—are also possible.
Intuitively, such mechanisms cannot be trained to perform unbounded counting based on a finite sample
as the model has no means of generalising the counting behaviour to dimensions beyond those seen
in training. We discuss this more in depth in Section 5.6, where we also prove that an SRNN cannot
represent a binary counter.
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4. The GRU can also be trained to recognise anbn and anbncn, but they do not have
clear counting dimensions, and they generalise to much smaller n than the LSTMs,
often failing to generalise correctly even for n within their training domain.

5. Trained LSTM networks outperform trained GRU networks on random test sets
for the languages anbn and anbncn.

Similar empirical observations regarding the ability of the LSTM to learn to recog-
nise anbn and anbncn are described also in [GS01].

We train 10-dimension, 1-layer LSTM and GRU networks to recognise anbn and
anbncn. For anbn the training samples went up to n = 100 and for anbncn up to
n = 50.6

Results On anbn, the LSTM generalises well up to n = 256, after which it accu-
mulates a deviation making it reject anbn but recognise anbn+1 for a while, until the
deviation grows.7 The GRU does not capture the desired concept even within its train-
ing domain: accepting anbn+1 for n > 38, and also accepting anbn+2 for n > 97. It
stops accepting anbn for n > 198.

On anbncn the LSTM recognises well until n = 100. It then starts accepting also
anbn+1cn. At n > 120 it stops accepting anbncn and switches to accepting anbn+1cn,
until at some point the deviation grows. The GRU accepts already a9b10c12, and stops
accepting anbncn for n > 63.

Figure 5.1a plots the activations of the 10 dimensions of the anbn-LSTM for the
input a1000b1000. While the LSTM misclassifies this example, the use of the count-
ing mechanism is clear. Figure 5.1b plots the activation for the anbncn LSTM on
a100b100c100. Here, again, the two counting dimensions are clearly identified—indicating
the LSTM learned the canonical 2-counter solution—although the slightly-imprecise
counting also starts to show. In contrast, Figures 5.1c and 5.1d show the state values
of the GRU-networks. The GRU behaviour is much less interpretable than the LSTM.
In the anbn case, some dimensions may be performing counting within a bounded range,
but move to erratic behaviour at around t = 1750 (the network starts to misclassify
on sequences much shorter than that). The anbncn state dynamics are even less inter-
pretable.

6Implementation in DyNet, using the SGD Optimiser. Positive examples are generated by sampling
n in the desired range. For negative examples we sample 2 or 3 n values independently, and ensuring
at least one of them differs from the others. We dedicate a portion of the examples as the dev set, and
train up to 100% dev set accuracy.

7These fluctuations occur as the networks do not fully saturate their gates, meaning the LSTM im-
plements an imperfect counter that accumulates small deviations during computation, e.g.: increasing
the counting dimension by 0.99 but decreasing only by 0.98. Despite this, we see that the its solution
remains much more robust than that found by the GRU—the LSTM has learned the essence of the
counting based solution, but its implementation is imprecise.
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Finally, we created 1000-sample test sets for each of the languages. For anbn we
used words with the form an+ibn+j where n ∈ rand(0, 200) and i, j ∈ rand(−2, 2),
and for anbncn we use words of the form an+ibn+jcn+k where n ∈ rand(0, 150) and
i, j, k ∈ rand(−2, 2). The LSTM’s accuracy was 100% and 98.6% on anbn and anbncn

respectively, as opposed to the GRU’s 87.0% and 86.9%, also respectively.
All of this empirically supports our result, showing that IBFP-LSTMs can not

only theoretically implement “unbounded” counters, but also learn to do so in practice
(although not perfectly), while IBFP-GRUs do not manage to learn proper counting
behaviour, even when allowing floating point computations.

5.6 Impossibility of Counting in Binary

While we have seen that the SRNN and GRU cannot allocate individual counting di-
mensions, the question remains whether they can count using a more elaborate mech-
anism, perhaps over several dimensions. We show here that one such mechanism—a
binary counter—is not implementable in the SRNN.

For the purposes of this discussion, we first define a binary counter in an RNN.

Binary Interpretation In an RNN with hidden state values in the range (−1, 1),
the binary interpretation of a sequence of dimensions d1, ..., dn of its hidden state is the
binary number obtained by replacing each positive hidden value in the sequence with
a ‘1’ and each negative value with a ‘0’. For instance: the binary interpretation of the
dimensions 3,0,1 in the hidden state vector (0.5,−0.1, 0.3, 0.8) is 110, i.e., 6.

Binary Counting We say that the dimensions d1, d2, ..., dn in an RNN’s hidden
state implement a binary counter in the RNN if, in every transition, their binary
interpretation either increases, decreases, resets to 0, or doesn’t change.8

A similar pair of definitions can be made for state values in the range (0, 1).
We first note intuitively that an SRNN would not generalise binary counting to a

counter with dimensions beyond those seen in training—as it would have no reason to
learn the ‘carry’ behaviour between the untrained dimensions. We prove further that
we cannot reasonably implement such counters regardless.

We now present a proof sketch that a single-layer SRNN with hidden size n ≥ 3
cannot implement an n-dimensional binary counter that will consistently increase on
one of its input symbols. After this, we will prove that even with helper dimensions,
we cannot implement a counter that will consistently increase on one input token and
decrease on another—as we might want in order to classify the language of all words

8We note that the SKCMs presented here are more restricted in their relation between counter
action and transition, but prefer here to give a general definition. Our proof will be relevant even
within the restrictions.
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w for which #a(w) = #b(w).9

Consistently Increasing Counter: The proof relies on the linearity of the affine
transform Wx + Uh + b, and the fact that ‘carry’ is a non-linear operation. We work
with state values in the range (−1, 1), but the proof can easily be adapted to (0, 1)
by rewriting h as h′ + 0.5, where h′ = h − 0.5 is a vector with values in the range
(−0.5, 0.5).

Suppose we have a single-layer SRNN with hidden size n = 3, such that its entire
hidden state represents a binary counter that increases every time it receives the input
symbol a. We denote by xa the embedding of a, and assume w.l.o.g. that the hidden
state dimensions are ordered from MSB to LSB, e.g. the hidden state vector (1, 1,−1)
represents the number 110=6.

Recall that the binary interpretation of the hidden state relies only on the signs of
its values. We use p and n to denote ‘some’ positive or negative value, respectively.
Then the number 6 can be represented by any state vector (p, p, n).

Recall also that the SRNN state transition is

ht = tanh(Wxt + Uht−1 + b)

and consider the state vectors (−1, 1, 1) and (1,−1,−1), which represent 3 and 4 re-
spectively. Denoting b̃ = Wxa + b, we find that the constants U and b̃ must satisfy:

tanh(U(−1, 1, 1) + b̃) = (p, n, n)

tanh(U(1,−1,−1) + b̃) = (p, n, p)

As tanh is sign-preserving, this simplifies to:

U(−1, 1, 1) = (p, n, n)− b̃

U(1,−1,−1) = (p, n, p)− b̃

Noting the linearity of matrix multiplication and that (1,−1,−1) = −(−1, 1, 1), we
obtain:

U(−1, 1, 1) = U(−(1,−1,−1)) = −U(1,−1,−1)

(p, n, n)− b̃ = b̃− (p, n, p)

i.e. for some assignment to each p and n, 2b̃ = (p, n, n) + (p, n, p), and in particular
b̃[1] < 0.

9Of course a counter could also be ‘decreased’ by incrementing a parallel, ‘negative’ counter, and
implementing compare-to-zero as a comparison between these two. As intuitively no RNN could gen-
eralise binary counting behaviour to dimensions not used in training, this approach could quickly find
both counters outside of their learned range even on a sequence where the difference between them is
never larger than in training.
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Similarly, for (−1,−1, 1) and (1, 1,−1), we obtain

U(−1,−1, 1) = (n, p, n)− b̃

U(1, 1,−1) = (p, p, p)− b̃

i.e.
(n, p, n)− b̃ = b̃− (p, p, p)

or 2b̃ = (p, p, p) + (n, p, n), and in particular that b̃[1] > 0, leading to a contradiction
and proving that such an SRNN cannot exist. The argument trivially extends to n > 3
(by padding from the MSB).

We note that this proof does not extend to the case where additional, non counting
dimensions are added to the RNN—at least not without further assumptions, such as
the assumption that the counter behave correctly for all values of these dimensions,
reachable and unreachable. One may argue then that, with enough dimensions, it could
be possible to implement a consistently increasing binary counter on a subset of the
SRNN’s state.10 We now show a counting mechanism that cannot be implemented even
with such ‘helper’ dimensions.

Bi-Directional Counter: We show that for n ≥ 3, no SRNN can implement an n-
dimensional binary counter that increases for one token, σup, and decreases for another,
σdown. As before, we show the proof explicitly for n = 3, and note that it can be simply
expanded to any n > 3 by padding.

Assume by contradiction we have such an SRNN, with m ≥ 3 dimensions, and as-
sume w.l.o.g. that a counter is encoded along the first 3 of these. We use the shorthand
(v1, v2, v3)c to show the values of the counter dimensions explicitly while abstracting
the remaining state dimensions, e.g. we write the hidden state (−0.5, 0.1, 1, 1, 1) as
(−0.5, 0.1, 1)c where c = (1, 1).

Let xup and xdown be the embeddings of σup and σdown, and as before denote
bup = Wxup + b and bdown = Wxdown + b. Then for some reachable state h1 ∈ R where
the counter value is 1 (e.g., the state reached on the input sequence σup

11)), we find
that the constants U, bdown, and bup must satisfy:

tanh(Uh1 + bup) = (n, p, n)c1

tanh(Uh1 + bdown) = (n, n, n)c2

(i.e., σup increases the counter and updates the additional dimensions to the values c1,
while σdown decreases and updates to c2.) Removing the sign-preserving function tanh

10(By storing processing information on the additional, ‘helper’ dimensions)
11(Or whichever appropriate sequence if the counter is not initiated to zero.)
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we obtain the constraints

Uh1 + bup = (n, p, n)sign(c1)

Uh1 + bdown = (n, n, n)sign(c2)

i.e. (bup − bdown)[0 : 2] = (n, p, n) − (n, n, n), and in particular (bup − bdown)[1] > 0.
Now consider a reachable state h3 for which the counter value is 3. Similarly to before,
we now obtain

Uh3 + bup = (p, n, n)sign(c3)

Uh3 + bdown = (n, p, n)sign(c4)

from which we get (bup − bdown)[0 : 2] = (p, n, n) − (n, p, n), and in particular (bup −
bdown)[1] < 0, a contradiction to the previous statement. Again we conclude that no
such SRNN can exist.

5.7 Simplified K-Counter Machines

In this section, we elaborate on the definition of k-counter machines used in this work,
and the power of this model.

We use a simplified variant of the k-counter machines (SKCM) defined in [FMR68],
which has no autonomous states and makes classification decisions based on a combi-
nation of its current state and counter values. This variant consumes input sequences
on a symbol by symbol basis, updating at each step its state and its counters, the
latter of which may be manipulated by increment, decrement, zero, or no-ops alone,
and observed only by checking equivalence to zero. To define the transitions of this
model its accepting configurations, we will introduce the following notations:

Notations We define z : Zk → {0, 1}k as follows: for every n ∈ Zk, for every
1 ≤ i ≤ k, z(n)i = 0 iff ni = 0 (this function masks a set of integers such that only
their zero-ness is observed). For a vector of operations, o ∈ {−1, +1,×0,×1}k, we
denote by o(n) the pointwise application of the operations to the vector n ∈ Zk, e.g.
for o = (+1,×0,×1), o((5, 2, 3)) = (6, 0, 3).

We now define the model. An SKCM is a tuple M = 〈Σ, Q, qo, k, δ, u, F 〉 containing:

1. A finite input alphabet Σ
2. A finite state set Q

3. An initial state q0 ∈ Q

4. k ∈ N, the number of counters
5. A state transition function

δ : Q× Σ× {0, 1}k → Q
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6. A counter update function12

u : Σ→ {−1, +1,×0,×1}k

7. A set of accepting masked13 configurations

F ⊆ Q× {0, 1}k

The set of configurations of an SKCM is the set C = Q × Zk, and the initial
configuration is c0 = (q0, 0̄) (i.e., the counters are initiated to zero). The transitions of
an SKCM are as follows: given a configuration ct = (q, n) (n ∈ Zk) and input wt ∈ Σ,
the next configuration of the SKCM is ct+1 = (δ(q, wt, z(n)), u(wt)(n)).

The language recognised by a k-counter machine is the set of words w for which
the machine reaches an accepting configuration—a configuration c = (q, n) for which
(q, z(n)) ∈ F .

Note that while the counters can and are increased to various non-zero values, the
transition function δ and the accept/reject classification of the configurations observe
only their zero-ness.

5.7.1 Computational Power of SKCMs

We show that the SKCM model can recognise the context-free and context-sensitive
languages anbn and anbncn, but not the context free language of palindromes, mean-
ing its computational power differs from the language classes defined in the Chomsky
hierarchy. Similar proofs appear in [FMR68] for their variant of the k-counter machine.

anbn: We define the following SKCM over the alphabet {a, b}:

1. Q = {qa, qb, qr}
2. q0 = qa

3. k = 1
4. u(a) = +1, u(b) = −1
5. for any z ∈ {0, 1}:

δ(qa, a, z) = qa, δ(qa, b, z) = qb,

δ(qb, a, z) = qr, δ(qb, b, z) = qb

δ(qr, a, z) = qr, δ(qr, b, z) = qr

6. C = {(qb, 0)}

12 We note that in this definition, the counter update function depends only on the input symbol.
In practice we see that the LSTM is not limited in this way, and can also update according to some
state-input combinations—as can be seen when it it is taught, for instance, the language anban We
do not explore this here however, leaving a more complete characterisation of the learnable models to
future work.

13i.e., counters are observed only by zero-ness.
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The state qr is a rejecting sink state, and the states qa and qb keep track of whether the
sequence is currently in the “a” or “b” phase. If an a is seen after moving to the b phase,
the machine moves to (and stays in) the rejecting state. The counter is increased on
input a and decreased on input b, and the machine accepts only sequences that reach
the state qb with counter value zero, i.e., that have increased and decreased the counter
an equal number of times, without switching from b to a. It follows easily that this
machine recognises exactly the language anbn.

anbncn: We define the following SKCM over the alphabet {a, b}. As its state transition
function ignores the counter values, we use the shorthand δ(q, σ) for δ(q, σ, z), for all
z ∈ {0, 1}2.

1. Q = {qa, qb, qc, qr}
2. q0 = qa

3. k = 2
4. u(a) = (+1, ∅),

u(b) = (−1, +1),
u(c) = (∅,−1)

5. for any z ∈ {0, 1}:
δ(qa, a) = qa, δ(qa, b) = qb, δ(qa, c) = qr,

δ(qb, a) = qr, δ(qb, b) = qb, δ(qb, c) = qc,

δ(qc, a) = qr, δ(qc, b) = qr, δ(qc, c) = qc,

δ(qr, a) = qr, δ(qr, b) = qr, δ(qr, c) = qr

6. C = {(qc, 0, 0)}

By similar reasoning as that for anbn, we see that this machine recognises exactly the
language anbncn. We note that this construction can be extended to build an SKCM
for any language of the sort an

1 an
2 ...an

m, using k = m− 1 counters and k + 1 states.

Palindromes: We prove that no SKCM can recognise the language of palindromes
defined over the alphabet {a, b, x} by the grammar S → x|aSa|bSb. The intuition
is that in order to correctly recognise this language in an one-way setting, one must
be able to reach a unique configuration for every possible input sequence over {a, b}
(requiring an exponential number of reachable configurations), whereas for any SKCM,
the number of reachable configurations is always polynomial in the input length.14

Let M be an SKCM with k counters. As its counters are only manipulated by steps
of 1 or resets, the maximum and minimum values that each counter can attain on any
input w ∈ Σ∗ are +|w| and −|w|, and in particular the total number of possible values a
counter could reach at the end of input w is 2|w|+1. This means that the total number
of possible configurations M could reach on input of length n is c(n) = |Q| · (2n + 1)k.

14This will hold even if the counter update function can rely on any state-input combination.
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c(n) is polynomial in n, and so there exists a value m for which the number of
input sequences of length m over {a, b}—2m—is greater than c(m). It follows by the
pigeonhole principle that there exist two input sequences w1 6= w2 ∈ {a, b}m for which
M reaches the same configuration. This means that for any suffix w ∈ Σ∗, and in
particular for w = x ·w−1

1 where w−1
1 is the reverse of w1, M classifies w1 ·w and w2 ·w

identically—despite the fact that w1 · x · w−1
1 is in the language and w2 · x · w−1

1 is
not. This means that M necessarily does not recognise this palindrome language, and
ultimately that no such M exists.

Note that this proof can be easily generalised to any palindrome grammar over 2
or more characters, with or without a clear ‘midpoint’ marker.
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Chapter 6

Learning Deterministic Weighted
Automata with Queries and
Counterexamples

6.1 Introduction

We address the problem of learning a probabilistic deterministic finite automaton
(PDFA) from a trained recurrent neural network (RNN) [Elm90]. RNNs, and in par-
ticular their gated variants GRU [CvMBB14; CGCB14b] and LSTM [HS97], are well
known to be very powerful for sequence modelling, but are not interpretable. PDFAs,
which explicitly list their states, transitions, and weights, are more interpretable than
RNNs [HVLS16], while still being analogous to them in behaviour: both emit a single
next-token distribution from each state, and have deterministic state transitions given
a state and token. They are also much faster to use than RNNs, as their sequence
processing does not require matrix operations.

We present an algorithm for reconstructing a PDFA from any given black-box dis-
tribution over sequences, such as an RNN trained with a language modelling objective
(LM-RNN). The algorithm is applicable for reconstruction of any weighted determin-
istic finite automaton (WDFA), and is guaranteed to return a PDFA when the target
is stochastic—as an LM-RNN is.1

In previous works, Ayache et al. [AEG18] and Okudono et al. [OWSH20] show how
to apply spectral learning [BCLQ14] to an LM-RNN to learn a weighted finite automaton
(WFA) approximating its behaviour. WFAs are a non-deterministic version of WDFAs,
and so not immediately analogous to RNNs. They are also slower to use than WDFAs,
as processing each token in an input sequence requires a matrix multiplication (as
opposed to a table lookup). Finally, spectral learning algorithms are not guaranteed

1The full definitions of WDFAs and PDFAs are presented in the Preliminaries chapter of this work,
Chapter 3.
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to return stochastic hypotheses even when the target is stochastic—though this can
remedied by using quadratic weighted automata [Bai11] and normalising their weights.
For these reasons we prefer PDFAs over WFAs for RNN approximation. Formally:

Problem Definition Given an LM-RNN R, find a PDFA W approximating R, such
that for any prefix p its next-token distributions in W and in R have low total variation
distance between them.

Existing works on PDFA reconstruction assume a sample based paradigm: the
target cannot be queried explicitly for a sequence’s probability or conditional proba-
bilities [CT04; CO94; BCG13]. As such, these methods cannot take full advantage of
the information available from an LM-RNN2. Meanwhile, most work on the extraction
of finite automata from RNNs has focused on “binary” deterministic finite automata
(DFAs) [GMC+92; CSS03; WZO+17; WGY22; MY18], which cannot fully express the
behaviour of an LM-RNN.

Our Approach Following the successful application of L∗ [Ang87] to RNNs for DFA
extraction [WGY22], we develop an adaptation of L∗ for the weighted case. The
adaptation returns a PDFA when applied to a stochastic target such as an LM-RNN.
It interacts with an oracle using two types of queries:

1. Membership Queries: requests to give the target probability of the last token in
a sequence.

2. Equivalence Queries: requests to accept or reject a hypothesis PDFA, returning a
counterexample—a sequence for which the hypothesis automaton and the target
language diverge beyond the tolerance on the next token distribution—if rejecting.

The algorithm alternates between filling an observation table with observations of
the target behaviour, and presenting minimal PDFAs consistent with that table to the
oracle for equivalence checking. This continues until an automaton is accepted. The
use of conditional properties in the observation table prevents the observations from
vanishing to 0 on low probabilities. To the best of our knowledge, this is the first work
on learning PDFAs from RNNs.

A key insight of our adaptation is the use of an additive variation tolerance t∈[0, 1]
when comparing rows in the table. In this framework, two probability vectors are
considered t-equal if their probabilities for each event are within t of each other. Using
this tolerance enables us to extract a much smaller PDFA than the original target, while
still making locally similar predictions to it on any given sequence. This is necessary
because RNN states are real valued vectors, making the potential number of reachable
states in an LM-RNN unbounded. The tolerance is non-transitive, making construction
of PDFAs from the table more challenging than in L∗ . Our algorithm suggests a way
to address this.

2It is possible to adapt these methods to an active learning setting, in which they may query
an oracle for exact probabilities. However, this raises other questions: on which suffixes are prefixes
compared? How does one pool the probabilities of two prefixes when merging them? We leave such an
adaptation to future work.
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Even with this tolerance, reaching equivalence may take a long time for large target
PDFAs, and so we design our algorithm to allow anytime stopping of the extraction.
The method allows the extraction to be limited while still maintaining certain guaran-
tees on the reconstructed PDFA.

Note. While this work only discusses RNNs, the algorithm itself is actually agnostic
to the underlying structure of the target, and can be applied to any autoregressive
language model. In particular it may be applied to transformer decoders [VSP+17;
BMR+20]. However, in this case the analogy to PDFAs breaks down.

Contributions The main contributions of this work are:
1. An algorithm for reconstructing a WDFA from any given weighted target, and in

particular a PDFA if the target is stochastic.
2. A method for anytime extraction termination while still maintaining correctness

guarantees.
3. An implementation of the algorithm3 and an evaluation over extraction from

LM-RNNs, including a comparison to other LM reconstruction techniques.

6.2 Related Work

In [WGY22], we presented a method for applying Angluin’s exact learning algorithm L∗

[Ang87] to RNNs, successfully extracting deterministic finite automata (DFAs) from
given binary-classifier RNNs. This work expands on this by adapting L∗ to extract
PDFAs from LM-RNNs. To apply exact learning to RNNs, one must implement equiv-
alence queries: requests to accept or reject a hypothesis. Okudono et al. [OWSH20]
show how to adapt the equivalence query presented in [WGY22] to the weighted case.

There exist many methods for PDFA learning, originally for acyclic PDFAs [RV88;
RST98; CO99], and later for PDFAs in general [CT04; CO94; TDdlH00; PG07; CG08;
BCG13]. These methods split and merge states in the learned PDFAs according to
sample-based estimations of their conditional distributions. Unfortunately, they require
very large sample sets to succeed (e.g., [CT04] requires ~13m samples for a PDFA with
|Q|, |Σ| = 2).

Distributions over Σ∗ can also be represented by WFAs, though these are non-
deterministic. These can be learned using spectral algorithms, which use SVD decom-
position and |Σ|+ 1 matrices of observations from the target to build a WFA [BDR09;
BCLQ14; BM15; HKZ08]. Spectral algorithms have recently been applied to RNNs to
extract WFAs representing their behaviour [AEG18; OWSH20; RLP19], we compare
to [AEG18] in this work. The choice of observations used is also a focus of research in
this field [QCG17].

For more on language modelling, see the reviews of Goodman [Goo01] or Rosen-
feld [Ros00], or the Sequence Prediction Challenge (SPiCe ) [BEL+16] and Probabilistic

3Available at www.github.com/tech-srl/weighted_lstar
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Automaton Challenge (PAutomaC) [VEdlH14].

6.3 Additional Preliminaries

Much of the background for this project—specifically on automata, the L∗ algorithm,
and RNNs—is presented in Chapter 3 of this thesis. For this particular project however,
we also introduce a notion of variation tolerance, which will allow us to apply our
modified version of the L∗ algorithm—originally designed for the symbolic setting—to
a noisy, continuous RNN. The original L∗ algorithm is presented in Subsection 3.2.1.

Variation Tolerance Given two categorical distributions p and q, their total variation
distance is defined δ(p, q) ≜ ‖p− q‖∞, i.e., the largest difference in probabilities that
they assign to the same event. Our algorithm tolerates some variation distance between
next-token probabilities, as follows:

Two event probabilities p1, p2 are called t-equal and denoted p1 ≈t p2 if |p1−p2| ≤ t.
Similarly, two vectors of probabilities v1, v2 ∈ [0, 1]n are called t-equal and denoted
v1 ≈t v2 if ‖v1 − v2‖∞ ≤ t, i.e. if max

i∈[n]
(|v1i − v2i |) ≤ t. For any distribution P over

Σ∗, S ⊂ Σ+$, and p1, p2 ∈ Σ∗, we denote p1 ≈(P,S,t) p2 if P l
S(p1) ≈t P l

S(p2), or simply
p1 ≈(S,t) p2 if P is clear from context. For any two language models A, B over Σ∗ and
w ∈ Σ+$, we say that A, B are t-consistent on w if P l

A(u) ≈t P l
B(u) for every prefix

u 6= ε of w. We call t the variation tolerance.

6.4 Learning PDFAs with Queries and Counterexamples

In this section we describe the details of our algorithm. We explain why a direct
application of L∗ to PDFAs will not work, and then present our non-trivial adaptation.
Our adaptation does not rely on the target being stochastic, and can in fact be applied
to reconstruct any WDFA from an oracle.

Direct application of L∗ does not work for LM-RNNs: L∗ is a polynomial-
time algorithm for learning a deterministic finite automaton (DFA) from an oracle.
It can be adapted to work with oracles giving any finite number of classifications to
sequences, and can be naively adapted to a probabilistic target P with finite possible
next-token distributions {P n(w)|w ∈ Σ∗} by treating each next-token distribution as
a sequence classification. However, this will not work for reconstruction from RNNs.
This is because the set of reachable states in a given RNN is unbounded, and so also
the set of next-token distributions. Thus, in order to practically adapt L∗ to extract
PDFAs from LM-RNNs, we must reduce the number of classes L∗ deals with.

Variation Tolerance Our algorithm reduces the number of classes it considers by
allowing an additive variation tolerance t ∈ [0, 1], and considering t-equality (as pre-
sented in Section 6.3) as opposed to actual equality when comparing probabilities. In
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introducing this tolerance we must handle the fact that it may be non-transitive: there
may exist a, b, c ∈ [0, 1] such that a ≈t b, b ≈t c, but a 6≈t c. 4

To avoid potentially grouping together all predictions on long sequences, which are
likely to have very low probabilities, our algorithm observes only local probabilities. In
particular, the algorithm uses an oracle that gives the last-token probability for every
non-empty input sequence.

6.4.1 The Algorithm

The algorithm loops over three main steps: 1. expanding an observation table OP,S until
it is closed and consistent, 2. constructing a hypothesis automaton, and 3. making an
equivalence query about the hypothesis. The loop repeats as long as the oracle returns
counterexamples for the hypotheses. In our setting, counterexamples are sequences
w ∈ Σ∗ after which the hypothesis and the target have next-token distributions that
are not t-equal. They are handled by adding all of their prefixes to P .

Our algorithm expects last token probabilities from the oracle, i.e.: O(w) = P l
T (w)

where PT is the target distribution. The oracle is not queried on P l
T (ε), which is

undefined. To observe the entirety of every prefix’s next-token distribution, OP,S is
initiated with P = {ε}, S = Σ$.

Step 1: Expanding the observation table OP,S is expanded as in L∗ [Ang87],
but with the definition of row equality relaxed. Precisely, it is expanded until:

1. Closedness For every p1 ∈ P and σ ∈ Σ, there exists some p2 ∈ P such that
p1·σ ≈S,t p2.

2. Consistency For every p1, p2 ∈ P such that p1 ≈S,t p2, for every σ ∈ Σ, p1·σ ≈S,t

p2·σ.
The table expansion is managed by a queue L initiated to P , from which prefixes p

are processed one at a time as follows: If p /∈ P , and there is no p′ ∈ P s.t. p ≈(t,S) p′,
then p is added to P . If p ∈ P already, then it is checked for inconsistency, i.e. whether
there exist p′, σ s.t. p ≈(t,S) p′ but p·σ 6≈(t,S) p′·σ. In this case a separating suffix s̃,
P l

T (p·σ·s̃) 6≈t P l
T (p′·σ·s̃) is added to S, such that now p 6≈t,S p′, and the expansion

restarts. Finally, if p ∈ P then L is updated with p·Σ.
As in L∗ , checking closedness and consistency can be done in arbitrary order.

However, if the algorithm may be terminated before OP,S is closed and consistent, it is
better to process L in order of prefix probability (see section 6.4.2).

Step 2: PDFA construction Intuitively, we would like to group equivalent rows of
the observation table to form the states of the PDFA, and map transitions between these
groups according to the table’s observations. The challenge in the variation-tolerating
setting is that t-equality is not transitive.

4We could define a variation tolerance by quantisation of the distribution space, which would be
transitive. However this may be unnecessarily aggressive at the edges of the intervals.
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Formally, let C be a partitioning (clustering) of P , and for each p ∈ P let c(p) ∈ C

be the partition (cluster) containing p. C should satisfy:
1. Determinism For every c ∈ C, p1, p2 ∈ c, σ ∈ Σ: p1·σ, p2·σ ∈ P =⇒ c(p1·σ) =

c(p2·σ).
2. t-equality (Cliques) For every c ∈ C and p1, p2 ∈ c, p1 ≈(t,S) p2.
For c ∈ C, σ ∈ Σ, we denote Cc,σ = {c(p·σ)|p ∈ c, p·σ ∈ P} the next-clusters

reached from c with σ, and kc,σ ≜ |Cc,σ|. Note that C satisfies determinism iff kc,σ ≤ 1
for every c ∈ C, σ ∈ Σ. Note also that the constraints are always satisfiable by the
clustering C = {{p}}p∈P

We present a 4-step algorithm to solve these constraints while trying to avoid ex-
cessive partitions: 5

1. Initialisation: The prefixes p ∈ P are partitioned into some initial clustering C

according to the t-equality of their rows, OS(p).
2. Determinism I : C is refined until it satisfies determinism: clusters c ∈ C with

tokens σ for which kc,σ > 1 are split by next-cluster equivalence into kc,σ new
clusters.

3. Cliques: Each cluster is refined into cliques (with respect to t-equality).
4. Determinism II : C is again refined until it satisfies determinism, as in (2).
Note that refining a partitioning into cliques may break determinism, but refining

into a deterministic partitioning will not break cliques. In addition, when only allowed
to refine clusters (and not merge them), all determinism refinements are necessary.
Hence the order of the last 3 stages.

Once the clustering C is found, a PDFA A = 〈C, Σ, δQ, c(ε), δW 〉 is constructed from
it. Where possible, δQ is defined directly by C: for every p·σ ∈ P , δQ(c(p), σ) ≜ c(p·σ).
For c, σ for which kc,σ = 0, δQ(c, σ) is set as the best cluster match for p·σ, where
p = argmaxp∈c P p

T (p). This is chosen according to the heuristics presented in Section
6.4.2. The weights δW are defined as follows: for every c ∈ C and σ ∈ Σ$,

δW (c, σ) ≜
∑

p∈c P p
T (p) · P l

T (p·σ)∑
p∈c P p

T (p)

.

Step 3: Answering Equivalence Queries We sample the target LM-RNN and
hypothesis PDFA A a finite number of times, testing every prefix of each sample to
see if it is a counterexample. If none is found, we accept A. Though simple, we find
this method to be sufficiently effective in practice. A more sophisticated approach is
presented in [OWSH20].

5We describe our implementation of these stages in Subsection 6.10.1.

90



6.4.2 Practical Considerations

We present some methods and heuristics that allow a more effective application of the
algorithm to large (with respect to |Σ|, |Q|) or poorly learned grammars.

Anytime Stopping In case the algorithm runs for too long, we allow termination
before OP,S is closed and consistent, which may be imposed by size or time limits
on the table expansion. If |S| reaches its limit, the table expansion continues but
stops checking consistency. If the time or |P | limits are reached, the algorithm stops,
constructing and accepting a PDFA from the table as is. The construction is unchanged
up to the fact that some of the transitions may not have a defined destination, for these
we use a “best cluster match” as described in section 6.4.2. This does not harm the
guarantees on t-consistency between OP,S and the returned PDFA discussed in Section
6.5.

Order of Expansion As some prefixes will not be added to P under anytime stopping,
the order in which rows are checked for closedness and consistency matters. We sort
L by prefix weight. Moreover, if a prefix p1 being considered is found inconsistent
w.r.t. some p2 ∈ P, σ ∈ Σ$, then all such pairs p2, σ are considered and the separating
suffix s̃ ∈ σ·S, O(p1·s̃) 6≈t O(p2·s̃) with the highest minimum conditional probability
maxp2mini=1,2

P p
T (pi·s̃)
P p

T (pi
) is added to S.

Best Cluster Match Given a prefix p /∈ P and set of clusters C, we seek a best
fit c ∈ C for p. First we filter C for the following qualities until one is non-empty,
in order of preference: 1. c′ = c ∪ {p} is a clique w.r.t. t-equality. 2. There exists
some p′ ∈ c such that p′ ≈(t,S) p, and c is not a clique. 3. There exists some p′ ∈ c

such that p′ ≈(t,S) p. If no clusters satisfy these qualities, we remain with C. From
the resulting group C ′ of potential matches, the best match could be the cluster c

minimising ||OS(p′) − OS(p)||∞, p′ ∈ c. In practice, we choose from C ′ arbitrarily for
efficiency.

Suffix and Prefix Thresholds Occasionally when checking the consistency of two
rows p1 ≈t p2, a separating suffix σ·s ∈ Σ·S will be found that is actually very unlikely
to be seen after p1 or p2. In this case it is unproductive to add σ·s to S. Moreover –
especially as RNNs are unlikely to perfectly learn a probability of 0 for some event – it
is possible that going through σ·s will reach a large number of ‘junk’ states. Similarly
when considering a prefix p, if P l

T (p) is very low then it is possible that it is the failed
encoding of probability 0, and that all states reachable through p are not useful.

We introduce thresholds εS and εP for both suffixes and prefixes. When a po-
tential separating suffix s̃ is found from prefixes p1 and p2, it is added to S only if
mini=1,2P p(pi·s̃)/P p(pi) ≥ εS . Similarly, potential new rows p /∈ P are only added to P if
P l(p) ≥ εP .
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Finding Close Rows We maintain P in a KD-tree T indexed by row entries OP,S(p),
with one level for every column s ∈ S. When considering of a prefix p·σ, we use T to
get the subset of all potentially t-equal prefixes. T ’s levels are split into equal-length
intervals, we find 2t to work well.

Choosing the Variation Tolerance In our initial experiments (on SPiCe 0-3), we
used t = 1/|Σ|. The intuition was that given no data, the fairest distribution over |Σ| is
the uniform distribution, and so this may also be a reasonable threshold for a significant
difference between two probabilities. In practice, we found that t = 0.1 often strongly
differentiates states even in models with larger alphabets – except for SPiCe 1, where
t = 0.1 quickly accepted a model of size 1. A reasonable strategy for choosing t is to
begin with a large one, and reduce it if equivalence is reached too quickly.

6.5 Guarantees

We note some guarantees on the extracted model’s qualities and relation to its target
model. Formal statements and full proofs for each of the guarantees listed here are
given in Section 6.7.

Model Qualities The model is guaranteed to be deterministic by construction.
Moreover, if the target is stochastic, then the returned model is guaranteed to be
stochastic as well.

Reaching Equivalence If the algorithm terminates successfully (i.e., having passed
an equivalence query), then the returned model is t-consistent with the target on every
sequence w ∈ Σ∗, by definition of the query. In practice we have no true oracle and
only approximate equivalence queries by sampling the models, and so can only attain
a probable guarantee of their relative t-consistency.

t-Consistency and Progress No matter when the algorithm is stopped, the re-
turned model is always t-consistent with its target on every p ∈ P ·Σ$, where P is the
set of prefixes in the table OP,S . Moreover, as long as the algorithm is running, the pre-
fix set P is always increased within a finite number of operations. This means that the
algorithm maintains a growing set of prefixes on which any PDFA it returns is guaran-
teed to be t-consistent with the target. In particular, this means that if equivalence is
not reached, at least the algorithm’s model of the target improves for as long as it runs.

6.6 Experimental Evaluation

We apply our algorithm to 2-layer LSTMs trained on grammars from the SPiCe com-
petition [BEL+16], adaptations of the Tomita grammars [Tom82] to PDFAs, and small
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PDFAs representing languages with unbounded history. The LSTMs have input di-
mensions 2-60 and hidden dimensions 20-100. The LSTMs and their training methods
are fully described in Subsection 6.10.2.

Compared Methods We compare our algorithm to the sample-based method ALER-
GIA [CO94], the spectral algorithm used in [AEG18], and n-grams. An n-gram is a
PDFA whose states are a sliding window of length n− 1 over the input sequence, with
transition function σ1·...·σn, σ 7→ σ2·...σn·σ. The probability of a token σ from state
s ∈ Σn−1 is the MLE estimate N(s·σ)

N(s) , where N(w) is the number of times the sequence
w appears as a subsequence in the samples. For ALERGIA, we use the PDFA/DFA
inference toolkit flexfringe [VH17].

Target Languages We train 10 RNNs on a subset of the SPiCe grammars, covering
languages generated by HMMs, and languages from the NLP, software, and biology
domains. We train 7 RNNs on PDFA adaptations of the 7 Tomita languages [Tom82],
made from the minimal DFA for each language by giving each of its states a next-
token distribution as a function of whether it is accepting or not. We give a full
description of the Tomita adaptations and extraction results in Section 6.9. As we
show in Subsection 6.6.1, the n-gram models prove to be very strong competitors on
the SPiCe languages. To this end, we consider three additional languages that need
to track information for an unbounded history, and thus cannot be captured by any
n-gram model. We call these UHLs (unbounded history languages).

UHLs 1 and 2 are PDFAs that cycle through 9 and 5 states with different next token
probabilities. UHL 3 is a weighted adaptation of the 5th Tomita grammar, changing its
next-token distribution according to the parity of the seen 0s and 1s. The UHLs are
drawn in Section 6.9.

Extraction Parameters Most of the extraction parameters differ between the RNNs,
and are described in the results tables (6.1, 6.2). For our algorithm, we always limited
the equivalence query to 500 samples. For the spectral algorithm, we made WFAs for
all ranks k ∈ [50], k = 50m, m ∈ [10], k = 100m, m ∈ [10], and k = rank(H). For
the n-grams we used all n ∈ [6]. For these two, we always show the best results for
NDCG and WER. For ALERGIA in the flexfringe toolkit, we use the parameters
symbol_count=50 and state_count=N, with N given in the tables.

Evaluation Measures We evaluate the extracted models against their target RNNs on
word error rate (WER) and on normalised discounted cumulative gain (NDCG), which
was the scoring function for the SPiCe challenge. In particular the SPiCe challenge
evaluated models on NDCG5, and we evaluate the models extracted from the SPiCe
RNNs on this as well. For the UHLs, we use NDCG2 as they have smaller alphabets.
We do not use probabilistic measures such as perplexity, as the spectral algorithm is
not guaranteed to return probabilistic automata.

1. Word error rate (WER): The WER of model A against B on a set of predictions
is the fraction of next-token predictions (most likely next token) that are different
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in A and B.
2. Normalised discounted cumulative gain (NDCG): The NDCG of A against B on

a set of sequences {w} scores A’s ranking of the top k most likely tokens after
each sequence w, a1, ..., ak, in comparison to the actual most likely tokens given
by B, b1, ..., bk. Formally:

NDCGk(a1, ..., ak) =
∑

n∈[k]
P l

B
(w·an)

log2(n+1)/
∑

n∈[k]
P l

B
(w·bn)

log2(n+1)

For NDCG we sample the RNN repeatedly, taking all the prefixes of each sample until
we have 2000 prefixes. We then compute the NDCG for each prefix and take the
average. For WER, we take 2000 full samples from the RNN, and return the fraction
of errors over all of the next-token predictions in those samples. An ideal WER and
NDCG is 0 and 1, we note this with ↓, ↑ in the tables.

6.6.1 Results and Discussion

Tables 6.1 and 6.2 show the results of extraction from the SPiCe and UHL RNNs,
respectively. In them, we list our algorithm as WL∗ (Weighted L∗ ). For the WFAs
and n-grams, which are generated with several values of k (rank) and n, we show the
best scores for each metric. We list the size of the best model for each metric. We do
not report the extraction times separately, as they are very similar: the majority of
time in these algorithms is spent generating the samples or Hankel matrices.

For PDFAs and WFAs the size columns present the number of states, for the WFAs
this is equal to the rank k with which they were reconstructed. For n-grams the size is
the number of table entries in the model, and the chosen value of n is listed in brackets.
In the SPiCe languages, our algorithm did not reach equivalence, and used between 1
and 6 counterexamples for every language before being stopped – with the exception
of SPiCe 1 with t = 0.1, which reached equivalence on a single state. The UHLs and
Tomitas used 0-2 counterexamples each before reaching equivalence.

The SPiCe results show a strong advantage to our algorithm in most of the small
synthetic languages (1-3), with the spectral extraction taking a slight lead on SPiCe
0. However, in the remaining SPiCe languages, the n-gram strongly outperforms all
other methods. Nevertheless, n-gram models are inherently restricted to languages that
can be captured with bounded histories, and the UHLs demonstrate cases where this
property does not hold. Indeed, all the algorithms outperform the n-grams on these
languages (Table 6.2).

Our algorithm succeeds in perfectly reconstructing the target PDFA structure for
each of the UHL languages, and giving it transition weights within the given variation
tolerance (when extracting from the RNN and not directly from the original target, the
weights can only be as good as the RNN has learned). The sample-based PDFA learning
method, ALERGIA, achieved good WER and NDCG scores but did not manage to
reconstruct the original PDFA structure. This may be improved by taking a larger
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Language
(|Σ|, ℓ) Model WER ↓ NDCG↑ Time (h) WER Size NDCG Size
SPiCe 0 WL∗ 0.084 0.987 0.3 4988 4988
(4, 1.15) Spectral 0.053 0.996 0.3 k=150 k=200

N-Gram 0.096 0.991 0.8 1118 (n=6) 1118 (n=6)
ALERGIA 0.353 0.961 2.9 66 66

SPiCe 1 WL∗ † 0.093 0.971 0.4 152 152
(20, 2.77) WL∗ 0.376 0.891 0.1 1 1

Spectral 0.319 0.909 2.9 k=12 k=11
N-Gram 0.337 0.897 0.8 8421 (n=4) 421 (n=3)
ALERGIA 0.376 0.892 1.2 7 7

SPiCe 2 WL∗ ‡ 0.08 0.972 0.8 962 962
(10, 2.13) Spectral 0.263 0.893 1.6 k=7 k=5

N-Gram 0.278 0.894 0.8 1111 (n=4) 1111 (n=4)
ALERGIA 0.419 0.844 1.2 11 11

SPiCe 3 WL∗ ‡ 0.327 0.928 1.0 675 675
(10, 2.15) Spectral 0.466 0.843 1.2 k=6 k=8

N-Gram 0.46 0.847 0.8 1111 (n=4) 11110 (n=5)
ALERGIA ‡‡ 0.679 0.79 1.2 8 8

SPiCe 4 WL∗ 0.301 0.829 0.7 4999 4999
(33, 1.73) Spectral 0.453 0.727 1.2 k=450 k=250

N-Gram 0.099 0.968 0.8 186601 (n=6) 61851 (n=5)
ALERGIA ‡‡ 0.639 0.646 4.4 42 42

SPiCe 6 WL∗ 0.593 0.644 2.5 5000 5000
(60, 1.66) Spectral 0.705 0.535 6.1 k=17 k=32

N-Gram 0.285 0.888 0.8 127817 (n=5) 127817 (n=5)
ALERGIA 0.687 0.538 1.9 26 26

SPiCe 7 WL∗ 0.626 0.642 0.5 4996 4996
(20, 1.8) Spectral 0.801 0.472 2.4 k=50 k=27

N-Gram 0.441 0.812 0.7 133026 (n=5) 133026 (n=5)
ALERGIA 0.735 0.569 1.4 8 8

SPiCe 9 WL∗ 0.503 0.721 0.5 4992 4992
(11, 1.15) Spectral 0.303 0.877 1.9 k=44 k=44

N-Gram 0.123 0.961 1.0 44533 (n=6) 44533 (n=6)
ALERGIA 0.501 0.739 1.1 44 44

SPiCe 10 WL∗ 0.651 0.593 0.9 4987 4987
(20, 2.1) Spectral 0.845 0.4 1.7 k=42 k=41

N-Gram 0.348 0.845 0.8 153688 (n=5) 153688 (n=5)
ALERGIA 0.81 0.51 2.0 13 13

SPiCe 14 WL∗ 0.442 0.716 0.8 4999 4999
(27, 0.89) Spectral†† 0.531 0.653 2.4 k=100 k=100

N-Gram 0.079 0.977 0.7 125572 (n=6) 46158 (n=5)
ALERGIA ‡‡ 0.641 0.611 1.2 19 19

Table 6.1: SPiCe results. Each language is listed with its alphabet size |Σ| and
RNN test loss ℓ. The n-grams and sample-based PDFAs were created from 5,000,000
samples, and shared samples. flexfringe was run with state_count=5000. Our
algorithm was run with t=0.1, εP , εS=0.01, |P |≤5000 and |S|≤100, and spectral with
|P |, |S|=1000, with some exceptions: †:t=0.05, εS , εP =0.0, ‡:εS=0, ††:|P |, |S|=750,
‡‡:state_count=10, 000.
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Language (|Σ|, ℓ) Model WER↓ NDCG↑ Time (s) WER Size NDCG Size
UHL 1 (2, 0.72) WL∗ 0.0 1.0 15 9 9

Spectral 0.0 1.0 56 k=80 k=150
N-Gram 0.129 0.966 259 63 (n=6) 63 (n=6)
ALERGIA 0.004 0.999 278 56 56

UHL 2 (5, 1.32) WL∗ 0.0 1.0 73 5 5
Spectral 0.002 1.0 126 k=49 k=47
N-Gram 0.12 0.94 269 3859 (n=6) 3859 (n=6)
ALERGIA 0.023 0.979 329 25 25

UHL 3 (2, 0.86) WL∗ 0.0 1.0 55 4 4
Spectral 0.0 1.0 71 k=44 k=17
N-Gram 0.189 0.991 268 63 (n=6) 63 (n=6)
ALERGIA 0.02 0.999 319 47 47

Table 6.2: UHL results. Each language is listed with its alphabet size |Σ| and RNN
test loss ℓ. The n-grams and sample-based PDFAs were created from 500,000 samples,
and shared samples. flexfringe was run with state_count = 50 . Our algorithm was
run with t=0.1, εP , εS=0.01, |P |≤5000 and |S|≤100, and spectral with |P |, |S|=250.

sample size, though it comes at the cost of efficiency.

Tomita Grammars The full results for the Tomita extractions are given in Section 6.9.
All of the methods reconstruct them with perfect or near-perfect WER and NDCG,

except for n-gram which sometimes fails. For each of the Tomita RNNs, our algo-
rithm extracted and accepted a PDFA with identical structure to the original target
in approximately 1 minute (the majority of this time was spent on sampling the RNN
and hypothesis before accepting the equivalence query). These PDFAs had transition
weights within the variation tolerance of the corresponding target transition weights.

On the effectiveness of n-grams The n-gram models prove to be a very strong
competitors for many of the languages. Indeed, n-gram models are very effective for
learning in cases where the underlying languages have strong local properties, or can
be well approximated using local properties, which is rather common (see e.g., Sharan
et al. [SKLV16]). However, there are many languages, including ones that can be
modelled with PDFAs, for which the locality property does not hold, as demonstrated
by the UHL experiments.

As n-grams are merely tables of observed samples, they are very quick to create.
However, their simplicity also works against them: the table grows exponentially in
n and polynomially in |Σ|. In the future, we hope that our algorithm can serve as a
base for creating reasonably sized finite state machines that will be competitive on real
world tasks.

6.7 Guarantees

We show that our algorithm returns a PDFA, and discuss the relation between the
obtained PDFA A and the target T when anytime stopping is and isn’t used.
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6.7.1 Probability

Theorem 6.1. The algorithm returns a PDFA.

Proof. Let C be the final clustering of P achieved by the method in Section 6.4.1. By
construction, the algorithm returns a finite state machine A = 〈C, Σ, c(ε), δQ, δW , β〉
with well defined states, initial state, transition weights and stopping weights. We show
that this machine is deterministic and probabilistic, i.e.:

1. Deterministic: for every c ∈ C, σ ∈ Σ, δQ(c, σ) is uniquely defined
2. Probabilistic: for every c ∈ C, σ ∈ Σ: δQ(c, σ) ∈ [0, 1], β(c) ∈ [0, 1], and β(c) +∑

σ∈Σ δW (c, σ) = 1.
Proof of (1): By the final refinement of the clustering (Determinism II), kc,σ ≤ 1 and
so by construction δQ(c, σ) is assigned at most one value. If, and only if, kc,σ < 1, then
δQ(c, σ) is assigned some best available value. So δQ(c, σ) is always assigned exactly
one value.

Proof of (2): the values of δW and β are weighted averages of probabilities, and
so also in [0, 1] themselves. They also sum to 1 as they are averages of distributions.
Formally, for every c ∈ C:

β(c) +
∑
σ∈Σ

δW (c, σ) =

∑
p∈c P p

T (p)P l
T (p·$)∑

p∈c P p
T (p)

+
∑
σ∈Σ

∑
p∈c P p

T (p)P l
T (p·σ)∑

p∈c P p
T (p)

=

∑
p∈c P p

T (p)P l
T (p·$)∑

p∈c P p
T (p)

+
∑

p∈c

∑
σ∈Σ P p

T (p)P l
T (p·σ)∑

p∈c P p
T (p)

=

∑
p∈c P p

T (p)
∑

σ∈Σ$
P l

T (p·σ)∑
p∈c P p

T (p)
=
(∗)

∑
p∈c P p

T (p)∑
p∈c P p

T (p)
= 1

where (∗) follows from the probabilistic behaviour of T : ∑
σ∈Σ$

P l
T (p·σ) = 1 for any

p ∈ Σ∗. ■

6.7.2 Progress

We consider extraction using noise tolerance t from some target T = 〈Q, Σ, qi, δQ, δT
W 〉.

For the observation table OP,S at any stage, we denote nP,S the size of the largest set
of pairwise t-distinguishable rows OS(p), p ∈ P .

Let A be an automaton constructed by the algorithm, whether or not it was stopped
ahead of time. Let OP,S be the observation table reached before making A, C ⊂ P(P )
be the clustering of P attained when building A from OP,S (i.e., the states of A), and
denote A = 〈C, Σ, ci, δC , δA

W 〉. Denote c : P → C the cluster for each prefix, i.e. p ∈ c(p)
for every p ∈ P . In addition, for every cluster c ∈ C, denote pc the prefix pc ∈ c from
which δA

W (c, ◦) was defined when building A.
We show that as the algorithm progresses, it defines a monotonically increasing
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group of sequences W ⊂ Σ+$ on which the target T and the algorithm’s automata A

are t-consistent, and that this group is P ·Σ$.

Lemma 6.7.1. P is always prefix closed.

Proof. P begins as {ε}, which is prefix closed. Only two operations add to P : closedness
and counterexamples. When adding from closedness, the new prefix added to P is of
the form p·σ for p ∈ P, σ ∈ Σ and so P remains prefix closed. When adding from a
counterexample w, w is added along with all of its prefixes, and so P remains prefix
closed. ■

Lemma 6.7.2. For every p ∈ P , δ̂C(ci, p) = c(p), i.e. p ∈ δ̂C(ci, p).

Proof. We show this by induction on the length of p. For |p| = 0 i.e. for ε, δ̂C(ε) = ci

by definition of the recursive application of δC , and ci=c(ε) by construction (in the
algorithm). We assume correctness of the lemma for |p| = n, p ∈ P . Consider p ∈ P ,
|p| = n + 1, denote p = r·σ, r ∈ Σ∗, σ ∈ Σ. By the prefix closedness of P , r ∈ P , and so
by the assumption δ̂C(r) = c(r). Now by the definition of δ̂C , δ̂C(p) = δC(δ̂C(r), σ) =
δC(c(r), σ). By the construction of A, c(r) is defined such that δC(c(r), σ) = c(p·σ) for
every s ∈ c(r) s.t. s·σ ∈ P , and so in particular for r ∈ c(r), as r·σ = p ∈ P ). This
results in δ̂C(p) = δQ(c(r), σ) = c(p), as desired. ■

Lemma 6.7.3. For every p ∈ P and σ ∈ Σ$, δA(c(p), σ) ≈t P l
T (p·σ).

Proof. By construction of A, in particular by the clique requirement for the clusters
of C, all of the prefixes p′ ∈ c(p) satisfy OS(p′) = OS(p′) ≈t OS(p) = OS(p), and in
particular for Σ$ ⊆ S: OΣ$(p′) ≈t OΣ$(p) (recall that S is initiated to Σ$ and never
reduced). δA(c(p), σ) is defined as the weighted average of O(p′·σ) for each of these
p′ ∈ c(p), and so it is also t-equal to O(p·σ) i.e. P l

T (p·σ), as desired. ■

Theorem 6.2. For every p ∈ P, σ ∈ Σ$, A, T are t-consistent on p·σ.

Proof. let u 6= ε be some prefix of p·σ. Necessarily v = u:−1 is some prefix of p ∈ P ,
and so by the prefix-closedness of P (Lemma 6.7.1) v ∈ P . Denote a = u−1 ∈ Σ$.
Then

P l
T (u) = P l

T (v·a) ≈t δA(c(v), a) = δA(δ̂C(v), a) = P l
A(u)

where the second and third transitions are justified for v ∈ P by Lemma 6.7.3 and
Lemma 6.7.2 respectively. This for any prefix u 6= ε of p·σ, and so by definition A, T

are t-consistent on p·σ as desired. ■

This concludes the proof that A, T are always t-consistent on P ·Σ$. We now show
that the algorithm increases P ·Σ$ every finite number of operations, beginning with a
direct result from Theorem 6.2:
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Corollary 6.3. Every counterexample increases P by at least 1

Proof. Recall that counterexamples to proposed automata are sequences w ∈ Σ+$ for
which P l

T (w) 6≈t P l
A(w), and that they are handled by adding all their strict prefixes

to P . Assume by contradiction some counterexample w ∈ Σ+$ for which P does not
increase. Then in particular w:−1 ∈ P , and by Theorem 6.2, P l

T (w) = P l
T (w:−1·w−1) ≈t

P l
A(w:−1·w−1) = P l

A(w), a contradiction. ■

Lemma 6.7.4. Always, |S| ≤ |P |·(|P |−1)
2 + |Σ$|. (i.e., every OP,S can only have had up

to |P |·(|P |−1)
2 inconsistencies in its making.)

Proof. S is initiated to Σ$, so its initial size is |Σ$|. S is increased only following
inconsistencies, cases in which there exist p1, p2 ∈ P, σ ∈ Σ s.t. p1 6= p2 OS(p1) ≈t

OS(p2), but OS(p1) 6≈t OS(p2). Once some p1, p2 ∈ P cause a suffix s to be added to
S, by construction of the algorithm, OS(p1) 6≈t OS(p2) for the remainder of the run
(as s ∈ S is a suffix for which O(p1, s) 6≈t O(p2, s)). There are exactly |P |·(|P |−1)

2 pairs
p1 6= p2 ∈ P and so that is the maximum number of possible S may have been increased
in any run, giving the maximum size |S| ≤ |P |·(|P |−1)

2 + |Σ$|. ■

(Note: If the t-equality relation was transitive, it would be possible to obtain a
linear bound in the size of S. However as it is not, it is possible that a separating suffix
may be added to S that separates p1 and p2 while leaving them both t-equal to to some
other p3.)

Corollary 6.4 (Progress). For as long as the algorithm runs, it strictly expands a
group C ⊂ Σ∗ of sequences on which the automata A it returns is t-consistent with its
target T .

Proof. From Theorem 6.2, C = P × Σ$ is a group of sequences on which A is always
t-consistent with T . We show that C is strictly expanding as the algorithm progresses,
i.e. that every finite number of operations, P is increased by at least one sequence.

The algorithm can be split into 4 operations: searching for and handing an unclosed
prefix or inconsistency, building (and presenting) a hypothesis PDFA, or handling a
counterexample. We show that each one runs in finite time, and that there cannot be
infinite operations without increasing P .

Finite Runtime of the Operations
Building OP,S : Finding and handling an unclosed prefix requires a pass over all

P × Σ, while comparing row values to P – all finite as P is finite (rows are also finite
as S is bounded by P ’s size). Similarly finding and handling inconsistencies requires a
pass over rows for all P 2 × σ, also taking finite time.

Building an Automaton requires finding a clustering of P satisfying the conditions
and then a straightforward mapping of the transitions between these clusters. The
clustering is built by one initial clustering (ester-etal-2016-dbscan) over the finite set
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Figure 6.8.1: Target PDFA T

[H1] [H2]

[H3]

Figure 6.8.2: Hypotheses during extraction from T

P and then only refinement operations (without merges). As putting each prefix in
its own cluster is a solution to the conditions, a satisfying clustering will be reached
in finite time. Counterexamples Handling a counterexample w requires adding at most
|w| new rows to OP,S . As S is finite, this is a finite operation.

Finite Operations between Additions to P Handling an unclosed prefix by con-
struction increases P , and as shown in Corollary 6.3, so does handling a counterexample.
Building a hypothesis is followed by an equivalence query, after which the algorithm
will either terminate or a counterexample will be returned (increasing P ). Finally, by
6.7.4, the number of inconsistencies between every increase of P is bounded. ■

6.8 Example

We extract from the PDFA T presented in 6.8.1 using prefix and suffix thresholds
εP , εS = 0 and variation tolerance t = 0.1. We limit the number of samples per equiv-
alence query to 500. This extraction will demonstrate both types of table expansions,
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both types of clustering refinements, and counterexamples. Notice that in our example,
the state q5 is t-equal with respect to next-token distribution to both q1 and q3, though
they themselves are not t-equal to each other.

Extraction begins by initiating the table with P = {ε}, S = Σ$, and the queue
Q with P . We will pop from the queue in order of prefix weight, though this is not
necessary when not considering anytime stopping. At this point the table is:

P
S a b $

ε 0.5 0.4 0.1

The first prefix considered is ε, it is already in P . It is consistent simply as it is
not similar to any other p ∈ P . However it might not be closed. Its continuations
ε·Σ = {a, b} are added to Q, to check its closedness later. Q is now {a, b}.

Next is a (which has prefix weight 0.5). OS(a) = (0.7, 0.25, 0.05), which is not
t-equal to the only row in the table: OS(ε) = (0.5, 0.4, 0.1). It follows that a:−1 = ε

was not closed, and a is added to P . The table is now:

P
S a b $

ε 0.5 0.4 0.1
a 0.7 0.25 0.05

a is also consistent simply as it has no t-equal rows. Its continuations a·Σ are added
to Q to check closedness, giving Q = {b, ab, aa}.

Now for each of q ∈ Q, OS(q) = OS(ε), meaning that the table is closed. None
of the prefixes in Q are added to P , and so they are also not checked for consistency.
The expansion stops and a clustering C = {{ε}, {a}} is made (ε and a are not t-equal).
The transitions are mapped and the automaton H1 shown in figure 6.8.2 is presented
for an equivalence query.

H1 and T are each sampled according to their distributions up to 500 times, and
P n

T (p), P n
H1(p) are compared for every prefix p of each sample. This soon yields the

counterexample c = aaa, for which P n
H1(c) = (0.7, 0.25, 0.05) 6≈0.1 (0.5, 0.4, 0.1) =

P n
T (c). c’s prefixes ε, a, aa, aaa are added to P and the expansion restarts with Q = P

and table:

P
S a b $

ε 0.5 0.4 0.1
a 0.7 0.25 0.05
aa 0.5 0.4 0.1
aaa 0.5 0.4 0.1
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Q is processed: ε is already in P , a, b are added to Q. We check its consistency
with each of its t-equal rows, aa and aaa, beginning with aa. For a ∈ Σ, OS(ε·a) =
(0.7, 0.25, 0.05) 6≈0.1 (0.5, 0.4, 0.1) = OS(aa·a), with the biggest difference (0.2) being
on the suffix a ∈ S. The separating suffix a·a ∈ Σ·S is added to S, separating ε and aa

in the table:

P
S a b $ aa

ε 0.5 0.4 0.1 0.7
a 0.7 0.25 0.05 0.5
aa 0.5 0.4 0.1 0.5
aaa 0.5 0.4 0.1 0.6

The expansion is restarted with Q = P . Eventually all of P ·Σ are processed and the
table is found closed and consistent. The extraction moves to constructing a hypothesis.

An initial clustering is made, in our case using sklearn.cluster.ester-etal-2016-dbscan
with parameter min_samples=1. It returns C0 = {{ε, aa, aaa}, {a}}. However, this
does not satisfy the determinism requirement: for ε and aa, which are both in the
same cluster, their continuations with a ∈ Σ are also in P and appear in different
clusters. The cluster {ε, aa, aaa} is split such that ε and aa are separated. For aaa,
whose continuation aaaa is not in P , it is not important whether it joins ε or aa, and
it is equally close (with respect to L∞ distance on rows) to both. The new clustering
C = {{aa, aaa}, {a}, {ε}} is returned. This clustering satisfies t-equality (aa ≈t,S aaa),
and a hypothesis can be made.

For each cluster c ∈ C there is a p ∈ c for which p·a ∈ P and so all of the a-
transitions are simple to map. For b, the transitions are mapped according to the
closest rows in the table, e.g. the b-transition from the initial state c(ε) maps to c(aa),
as OS(b) = (0.5, 0.4, 0.1, 0.5) ≈t (0.5, 0.4, 0.1, 0.5) = OS(aa). This yields the PDFA H2
shown in 6.8.2.

Sampling H2 and T soon yields the counterexample bb, for which P n
T (bb) =

(0.7, 0.25, 0.05) 6≈t (0.5, 0.4, 0.1) = P n
H2(bb). All of bb’s prefixes are added to P , the

queue is again initiated to P , and expansion restarts with the table:

P
S a b $ aa

ε 0.5 0.4 0.1 0.7
a 0.7 0.25 0.05 0.5
aa 0.5 0.4 0.1 0.5
aaa 0.5 0.4 0.1 0.6
b 0.5 0.4 0.1 0.5
bb 0.7 0.25 0.05 0.5
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When the prefix b is processed, an inconsistency is found: b ≈t,S aa, but OS(bb) =
(0.7, 0.25, 0.05, 0.5) 6≈t (0.5, 0.4, 0.1, 0.6) = OS(aab), in particular on a ∈ S. ba is added
to S, Q is reset to P , and the expansion restarts with the table:

P
S a b $ aa ba

ε 0.5 0.4 0.1 0.7 0.5
a 0.7 0.25 0.05 0.5 0.5
aa 0.5 0.4 0.1 0.5 0.5
aaa 0.5 0.4 0.1 0.6 0.6
b 0.5 0.4 0.1 0.5 0.7
bb 0.7 0.25 0.05 0.5 0.5

This time the table is found to be closed and consistent. ester-etal-2016-dbscan
gives the initial clustering C0 = {{ε, aa, aaa, b}, {a, bb}}, and as before the deter-
minism refinement separates a and ε, giving C1 = {{aa, aaa, b}, {a, bb}, {ε}}. Now
the t-equality requirement is checked, and the first cluster does not satisfy it: while
aa ≈t,S aaa and b ≈t,S aaa, aa 6≈t,S b. The cluster is split across the suffix with the
largest range, ba, yielding the new clustering C = {{aa, aaa}, {a, bb}, {ε}, {b}}. This
clustering satisfies both determinism and t-equality and the hypothesis H3 is made,
with σ-transitions from clusters c for which there is no p ∈ c such that p·σ ∈ P (e.g. b

from {aa, aaa}) being made according to closest rows as described before.
Sampling 500 times from each of H3 and T yields no counterexample, and indeed

none exists even though the two are not exactly the same: the distributions of states
q5, q4 and q3 of T are t = 0.1-equal, and the PDFAs H3 and T are t-equal.

A note on prefix and suffix thresholds. Suppose that instead of T , we had a
PDFA T ′ over Σ = {a, b, c} as follows: T ′ is identical to T , except that from every state
q ∈ QT there is a c-transition with a very small probability ε leading to a different state
of an extremely large PDFA L. If ε is very small, developing L will be of little benefit
for the approximation, but waste a lot of time and space for the extraction. However,
if εS , εP > ε, then no prefix containing c will ever be added to the table, and similarly
no suffix containing c will ever be considered a separating suffix (needlessly separating
two prefixes). The existence of such transitions is quite possible in RNNs: they are
unlikely to perfectly learn to represent 0 even for tokens that have never been seen, and
moreover never ‘tame’ the states that would be reached from such transitions (as they
are not seen in training).

6.9 Synthetic Grammars

In this section, we expand on the details and results of the small synthetic grammars
considered in this work.
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6.9.1 Tomita Grammars

We adapt the Tomita grammars [Tom82] for use as weighted models as follows: for each
Tomita grammar and its minimal DFA T we create a PDFA variant TW which has the
same structure as T , and in which accepting/rejecting states are differentiated by their
preference for 0 or 1. Every state in TW has stopping probability 0.05, the states q have
transition weights 0.7 · 0.95 = 0.665 and 0.3 · 0.95 = 0.285, such that δW (q, 0) = 0.665
iff q is an accepting state in T . We show all of the adaptations in 6.9.1, labelling the
weighted variants T1 through T7 in the same order as their binary counterparts. The
images were generated using graphviz.

We train 7 RNNs on these grammars, their parameters and training routine are
described in 6.10.2. We extract from them with the same algorithms as for the SPiCe
and UHL languages. The extraction parameters and results are given in table 6.3.

From each of the Tomita RNNs, our algorithm successfully reconstructs a PDFA
with the exact same structure as the RNN’s target PDFA, and transition weights within
tolerance of the corresponding weights in the target. The extracted PDFAs for each
Tomita RNN are presented in 6.9.2.

6.9.2 Unbounded History Languages

The UHLs are 3 cyclic PDFAs, shown in 6.9.3. UHL 3 is a weighted adaptation of
Tomita 5, where the difference in probabilities between the states is lower than in our
original adaptations. This makes it harder for the n-gram to guess the current state
from local clues in its window (such as many appearances of one token over another).
Precisely:

UHL1 is a 9-state cycle PDFA over Σ = {0, 1} that loops through all of its states
one at a time, regardless of the actual input token. On all states it has stopping
probability 0.05, and divides the remaining next-token distribution over 0 and 1
as follows: on all states 0 has next-token probability 0.75 and 1 has 0.15, except
for the second, fifth, and ninth states, where this is reversed.

UHL2 is a 5-state cycle PDFA over Σ = {0,1,2,3,4}, that loops through all of
its states one at a time regardless of input token. At every state it has stopping
probability 0.045, and it gives next-token probability 0.591 to a different token
at each state, with the rest of the tokens getting a uniform distribution between
themselves.

UHL3 is a 4-state PDFA over Σ = {0,1} that maintains the parity of the seen
0 and 1 tokens. Every state has stopping probability 0.05, and most states give
0 next-token probability 0.525 and 1 next-token probability 0.425, except for the
state where the number of seen 0s and 1s is odd, where this is reversed.
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[T1] [T2]

[T3] [T4]

[T5] [T6] [T7]

Figure 6.9.1: Weighted variants of the Tomita grammars.
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Language (|Σ|, ℓ) Model WER↓ NDCG↑ Time (s) WER Size NDCG Size
Tomita 1 (2, 0.77) WL∗ 0.0 1.0 55 2 2

Spectral 0.0 1.0 18 k=10 k=10
N-Gram 0.0001 0.9998 27 63 (n=6) 31 (n=5)
ALERGIA 0.0 1.0 28 8 8

Tomita 2 (2, 0.78) WL∗ 0.0 1.0 55 3 3
Spectral 0.0 1.0 13 k=10 k=10
N-Gram 0.0 1.0 27 63 (n=6) 15 (n=4)
ALERGIA 0.0 1.0 28 6 6

Tomita 3 (2, 0.78) WL∗ 0.0 1.0 62 5 5
Spectral 0.0071 0.9945 13 k=7 k=13
N-Gram 0.0542 0.9918 27 63 (n=6) 63 (n=6)
ALERGIA 0.0318 0.9963 28 8 8

Tomita 4 (2, 0.79) WL∗ 0.0 1.0 56 4 4
Spectral 0.0 1.0 13 k=14 k=12
N-Gram 0.073 0.9887 27 63 (n=6) 63 (n=6)
ALERGIA 0.0 1.0 28 9 9

Tomita 5 (2, 0.79) WL∗ 0.0 1.0 56 4 4
Spectral 0.0001 1.0 11 k=67 k=23
N-Gram 0.1578 0.9755 27 63 (n=6) 63 (n=6)
ALERGIA 0.0315 0.991 29 15 15

Tomita 6 (2, 0.78) WL∗ 0.0 1.0 56 3 3
Spectral 0.0003 0.9999 23 k=36 k=36
N-Gram 0.1645 0.9695 27 63 (n=6) 63 (n=6)
ALERGIA 0.0448 0.9983 28 12 12

Tomita 7 (2, 0.78) WL∗ 0.0 1.0 63 5 5
Spectral 0.0003 0.9999 13 k=32 k=37
N-Gram 0.0771 0.9857 27 63 (n=6) 63 (n=6)
ALERGIA 0.0363 0.9936 28 11 11

Table 6.3: Tomita results. Each language is listed with its alphabet size |Σ| and RNN
test loss ℓ. The n-grams and sample-based PDFAs were created from 50,000 samples,
and shared samples. flexfringe was run with state_count = 50 . Our algorithm was
run with t=0.1, εP , εS=0, |P |≤5000 and |S|≤100, and spectral with |P |, |S|=100.
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[ET1] [ET2]

[ET3] [ET4]

[ET5] [ET6] [ET7]

Figure 6.9.2: PDFAs extracted using WL∗ from the RNNs trained on weighted variants
of the Tomita grammars.
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[ UHL1]

[ UHL2]

[ UHL3]

Figure 6.9.3: The UHL PDFAs.

UHL3 is an adaptation of the fifth Tomita grammar similar to our other presented
adaptations, except that here the next-token probabilities of 1 and 0 are closer to each
other, making it slightly harder to infer which states the PDFA has been in from a
finite history6

Applied with variation tolerance t = 0.1, our algorithm managed to reconstruct
every UHLs structure from its trained RNN perfectly, with weights within t of the
original7. The reconstructed PDFAs are shown in 6.9.4.

6This recalls the insight of [SKLV16], who note that unexpected tokens are useful as they convey
information about the current state of the model.

7(When extracting from RNNs, the weights of course can only be as good as those learned by the
RNNs)
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[EUHL1]

[EUHL2]

[EUHL3]

Figure 6.9.4: The UHL PDFAs, as reconstructed by WL∗ from RNNs trained on the
original UHLs.
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6.10 Implementation and Training Details

6.10.1 Implementation

Clustering the Prefixes The initial clustering can be done with any clustering algo-
rithm. In our implementation we use ester-etal-2016-dbscan [EKSX96], with t as the
noise tolerance and a minimum neighbourhood size 1 for core points. When splitting
a cluster into cliques, if its largest range across a single dimension is n > 1 times the
threshold t, it is split into dne clusters across that dimension. In the determinism re-
finement, when splitting a cluster c, there may be some p ∈ c for which p·σ /∈ P . In
this case a best match cσ for OS(p·σ) is found by the heuristic given in section 6.4.2,
and p is added to the respective new cluster.

6.10.2 Training Details

All the RNNs are 2-layer pytorch LSTMs with training dropout 0.5 and linear trans-
formation + softmax for the classification. The input token embeddings and initial
hidden states were treated as parameters.

The Tomita and UHL RNNs had input (embedding) dimension 2 and hidden di-
mension 50, except for UHL 2 which had input dimension 5. The SPiCe RNNs had
input/hidden dimensions (resp.) as follows: 0. 4/50 1. 20/50 2. 10/50 3. 10/50 4.
33/100 6. 60/100 7. 20/50 9. 11/100 10. 10/20 14. 27/30 .

The RNNs were trained with the ADAM optimiser and varying learning rates,
each training for 10 full epochs for learning rate (or less if the validation loss stopped
decreasing). The SPiCe and UHL RNNs used a cyclic learning rate, going through
8 values from 0.01 to 0.0001 2 and a half times. The Tomita RNNs simply used the
learning rates 0.01, 0.008, 0.006, 0.004, 0.002, 0.001, 0.0005, 0.0001, 5e−05 once in order.

The SPiCe RNNs were trained with the train samples given by the SPiCe com-
petition [BEL+16]. For the UHL and Tomita RNNs, we generated train sets of size
10, 000 and 20, 000 respectively by sampling from the target PDFAs according to their
distributions. For each RNN, we split its given train set into train, validation, and
test sets, taking respectively 90%/5%/5% of the original set. We checked each RNN’s
validation loss after every epoch. Whenever it worsened for 2 consecutive epochs, we
reverted to the previous best RNN (by validation loss) and moved to the next learning
rate.

For each RNN, in each training epoch we randomly split the train set into batches
of equal size (up to the last ‘leftover’ batch), and trained in these batches. For the
UHL and Tomita RNNs we trained with batch size 500 and for the SPiCe RNNs we
used 1, 000.
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Chapter 7

Thinking Like Transformers

7.1 Introduction

We present a computational model for the transformer architecture in the form of a sim-
ple language which we dub RASP (Restricted Access Sequence Processing Language).
Much as the token-by-token processing of RNNs can be conceptualised as finite state
automata [CSM89], our language captures the unique information-flow constraints un-
der which a transformer operates as it processes input sequences. Our model helps
reason about how a transformer operates at a higher-level of abstraction, reasoning in
terms of a composition of sequence operations rather than neural network primitives.

We are inspired by the use of automata as an abstract computational model for re-
current neural networks (RNNs). Using automata as an abstraction for RNNs has
enabled a long line of work, including extraction of automata from RNNs [OG96;
WGY22; AEG18], analysis of RNNs’ practical expressive power in terms of automata
[WGY18b; RLP19; Mer19; MWG+20], and even augmentations based on automata
variants [JM15]. Previous work on transformers explores their computational power,
but does not provide a computational model [YBR+20; Hah20; PBM21].

Thinking in terms of the RASP model can help derive computational results.
[BAG20] and [EGZ20] explore the ability of transformers to recognise Dyck-k languages,
with [BAG20] providing a construction by which Transformer-encoders can recognise
a simplified variant of Dyck-k. Using RASP, we succinctly express the construction of
[BAG20] as a short program, and further improve it to show, for the first time, that
transformers can fully recognise Dyck-k for all k.

Scaling up the complexity, [CTR20] showed empirically that transformer networks
can learn to perform multi-step logical reasoning over first order logical formulas pro-
vided as input, resulting in “soft theorem provers”. For this task, the mechanism of
the computation remained elusive: how does a transformer perform even non-soft the-
orem proving? As the famous saying by Richard Feynman goes, “what I cannot create,
I do not understand”: using RASP, we were able to write a program that performs
similar logical inferences over input expressions, and then “compile” it to the trans-
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1 same_tok = select(tokens ,tokens ,==);
2 hist = selector_width(same_tok ,
3 assume_bos = True);
4
5 first = not has_prev(tokens);
6 same_count = select(hist ,hist ,==);
7 same_count_reprs = same_count and
8 select(first ,True,==);
9

10 hist2 = selector_width(same_count_reprs ,
11 assume_bos = True);

Figure 7.1.1: We consider double-histogram, the task of counting for each in-
put token how many unique input tokens have the same frequency as itself (e.g.:
hist2("§aaabbccdef")=[§,1,1,1,2,2,2,2,3,3,3]). (a) shows a RASP program for
this task, (b) shows the selection patterns of that same program, compiled to a trans-
former architecture and applied to the input sequence §aaabbccdef, (c) shows the
corresponding attention heatmaps, for the same input sequence, in a 2-layer 2-head
transformer trained on double-histogram. This particular transformer was trained us-
ing both target and attention supervision, i.e.: in addition to the standard cross entropy
loss on the target output, the model was given an MSE-loss on the difference between
its attention heatmaps and those expected by the RASP solution. The transformer
reached test accuracy of 99.9% on the task, and comparing the selection patterns in
(b) with the heatmaps in (c) suggests that it has also successfully learned to replicate
the solution described in (a).
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former hardware, defining a sequence of attention and multi-layer perceptron (MLP)
operations.

Considering computation problems and their implementations in RASP allows us
to “think like a transformer” while abstracting away the technical details of a neural
network in favour of symbolic programs. Recognising that a task is representable in a
transformer is as simple as finding a RASP program for it, and communicating this
solution—previously done by presenting a hand-crafted transformer for the task—is
now possible through a few lines of code. Thinking in terms of RASP also allows us to
shed light on a recent empirical observation of transformer variants [PSL20], and to find
concrete limitations of “efficient transformers” with restricted attention [TDBM20].

In Section 7.5, we show how a compiled RASP program can indeed be realised in a
neural transformer (as in Figure 7.1.1), and occasionally is even the solution found by
a transformer trained on the task using gradient descent (Figs 7.5.5 and 7.5.4).

Code We provide a RASP read-evaluate-print-loop (REPL) in the repository
http://github.com/tech-srl/RASP, along with a RASP cheat sheet and link to
replication code for our work.

7.2 Overview

We begin with an informal overview of RASP, with examples. The formal introduction
is given in Section 7.3.

Intuitively, transformers’ computations are applied to their entire input in parallel,
using attention to draw on and combine tokens from several positions at a time as
they make their calculations [VSP+17; BCB15; LPM15]. The iterative process of a
transformer is then not along the length of the input sequence but rather the depth of
the computation: the number of layers it applies to its input as it works towards its
final result.
The computational model. Conceptually, a RASP computation over length-n input
involves manipulation of sequences of length n, and matrices of size n × n. There are
no sequences or matrices of different sizes in a RASP computation. The abstract
computation model is as follows:

The input of a RASP computation is two sequences, tokens and indices. The first
contains the user-provided input, and the second contains the range 0, 1, ..., n− 1. The
output of a RASP computation is a sequence, and the consumer of the output can
choose to look only at specific output locations.

Sequences can be transformed into other sequences through element-wise opera-
tions. For example, for the sequences s1 = [1, 2, 3] and s2 = [4, 5, 6], we can de-
rive s1 + s2 = [5, 7, 9], s1 + 2 = [3, 4, 5], pow(s1, 2) = [1, 4, 9], s1 > 2 = [F, F, T ],
pairwise_mul(s1, s2) = [4, 10, 18], and so on.

Sequences can also be transformed using a pair of select and aggregate operations
(Figure 7.2.2). Select operations take two sequences k, q and a boolean predicate p
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s = select([1,2,2],[0,1,2],==) res=aggregate(s, [4,6,8])

    1  2  2 
0  F  F  F 
1  T  F  F 
2  F  T  T

              4  6  8 
 F  F  F   4  6  8   =>   0 
 T  F  F   4  6  8   =>   4   =>   [0,4,7] 
 F  T  T   4  6  8   =>   7

Figure 7.2.2: Visualising the select and aggregate operations. On the left, a selection
matrix s is computed by select, which marks for each query position all of the key
positions with matching values according to the given comparison operator ==. On the
right, aggregate uses s as a filter over its input values, averaging only the selected
values at each position in order to create its output, res. Where no values have been
selected, aggregate substitutes 0 in its output.

over pairs of values, and return a selection matrix S such that for every i, j ∈ [n],
S[i][j] = p(k[i], q[j]). Aggregate operations take a matrix S and a numeric sequence v,
and return a sequence s in which each position s[i] combines the values in v according
to row i in S (see full definition in Section 7.3).

Aggregate operations (over select matrices) are the only way to combine values
from different sequence positions, or to move values from one position to another. For
example, to perform the python computation: x = [a[0] for _ in a], we must first
use S = select(indices, 0, =) to select the first position, and then x = aggregate(S, a)
to broadcast it across a new sequence of the same length.

RASP programs are lazy functional, and thus operate on functions rather
than sequences. That is, instead of a sequence indices= [0, 1, 2], we have a function
indices that returns [0, 1, 2] on inputs of length 3. Similarly, s3=s1+s2 is a function,
that when applied to an input x will produce the value s3(x), which will be computed as
s1(x)+s2(x). We call these functions s-ops (sequence operators). The same is true for
the selection matrices, whose functions we refer to as selectors, and the RASP language
is defined in terms of s-ops and selectors, not sequences and matrices. However, the
conceptual model to bear in mind is that of operations over sequences and selection
matrices.

Example: Double Histograms The RASP program in Figure 7.1.1 solves
double-histogram, the task of counting for each token how many unique input tokens
in the sequence have the same frequency as its own. More precisely, it implements the
slightly easier case where there is also a unique Beginning of Sequence (BOS) token §
that can be ignored:1

hist2("§aabcd")=[§,1,1,3,3,3]

1This manifests in the use of a slightly simpler selector_width function.
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The program begins by creating the the selector same_tok, in which each input
position focuses on all other positions containing the same token as its own, and then
applies the RASP operation selector_width to it in order to obtain the s-op hist,
which computes the frequency of each token in the input:

hist("§aabcd")=[§,2,2,1,1,1]

Next, the program uses the function has_prev2 to create the s-op first, which
marks the first appearance of each token in a sequence:

first("§aabcd")=[T,T,F,T,T,T]

Finally, applying selector_width to the selector same_count_reprs, which focuses
each position on all ‘first’ tokens with the same frequency as its own, provides hist2
as desired.

Example: Shuffle-Dyck in RASP As an example of the kind of tasks that are
natural to encode using RASP, consider the Shuffle-Dyck language, in which multiple
parentheses types must be balanced but do not have to satisfy any order with relation
to each other. (For example, "([)]" is considered balanced). In their work on trans-
former expressiveness, [BAG20] present a hand-crafted transformer for this language,
including the details of which dimension represents which partial computation. RASP
can concisely describe the same solution, showing the high-level operations while ab-
stracting away the details of their arrangement into an actual transformer architecture.

We present this solution in Figure 7.2.3: the code compiles to a transformer archi-
tecture using 2 layers and a total of 3 heads, exactly as in the construction of [BAG20].
These numbers are inferred by the RASP compiler: the programmer does not have to
think about such details.

A pair of parentheses is balanced in a sequence if their running balance is never
negative, and additionally is equal to exactly 0 at the final input token. Lines 13–
23 check this definition: lines 13 and 14 use pair_balance to compute the running
balances of each parenthesis pair, and 17 checks whether these balances were negative
anywhere in the sequence. The snippet in 21 (bal1==0 and bal2==0) creates an s-
op checking at each location whether both pairs are balanced, with the aggregation
of line 20 loading the value of this s-op from the last position. From there, a boolean
composition of end_0 and had_neg defines shuffle-dyck-2.

Compilation and Abstraction The high-level operations in RASP can be com-
piled down to execute on a transformer: for example, the code presented in Fig-
ure 7.1.1 compiles to a two-layer, 3-head (total) architecture, whose attention patterns
when applied to the input sequence "§aaabbccdef" are presented in Figure 7.1.1(b).
(The full compiled computation flow for this program—showing how its component
s-ops interact—is presented in Section 7.7).

RASP abstracts away low-level operations into simple primitives, allowing a pro-
grammer to explore the full potential of a transformer without getting bogged down

2Presented in Figure 7.7.12 in Section 7.7.
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1 def frac_prevs(sop,val){
2 prevs = select(indices ,indices ,<=);
3 return aggregate(prevs ,indicator(sop == val

));
4 }
5
6 def pair_balance(open ,close) {
7 opens = frac_prevs(tokens ,open);
8 closes = frac_prevs(tokens ,close);
9 return opens - closes;

10 }
11
12 bal1 = pair_balance("(",")");
13 bal2 = pair_balance("{","}");
14
15 negative = bal1<0 or bal2<0;
16 had_neg = aggregate(select_all ,
17 indicator(negative))>0;
18 select_last = select(indices ,length -1,==);
19 end_0 = aggregate(select_last ,bal1==0 and

bal2==0);
20
21 shuffle_dyck2 = end_0 and not had_neg;

Figure 7.2.3: RASP program for the task shuffle-dyck-2 (balance 2 parenthesis pairs,
independently of each other), capturing a higher level representation of the hand-crafted
transformer presented by [BAG20].

in the details of how these are realised in practice. At the same time, RASP en-
forces the information-flow constraints of transformers, preventing anyone from writing
a program more powerful than they can express. One example of this is the lack of
input-dependent loops in the s-ops, reflecting the fact that transformers cannot ar-
bitrarily repeat operations3. Another is in the selectors: for each two positions, the
decision whether one selects (‘attends to’) the other is pairwise.

We find RASP a natural tool for conveying transformer solutions to given tasks. It is
modular and compositional, allowing us to focus on arbitrarily high-level computations
when writing programs. Of course, we are restricted to tasks for which a human
can encode a solution: we do not expect any researcher to implement, e.g., a strong
language model or machine-translation system in RASP—these are not realisable in
any programming language. Rather, we focus on programs that convey concepts that
people can encode in “traditional” programming languages, and the way they relate to
the expressive power of the transformer.

In Section 7.5, we will show empirically that RASP solutions can indeed translate
to real transformers. One example is given in Figure 7.1.1: having written a RASP

3Though work exploring such transformer variants exists: [DGV+19] devise a transformer archi-
tecture with a control unit, which can repeat its sublayers arbitrarily many times.
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program (left) for the double-histograms task, we analyse it to obtain the number of
layers and heads needed for a transformer to mimic our solution, and then train a
transformer with supervision of both its outputs and its attention patterns to obtain
a neural version of our solution (right). We find that the transformer can accurately
learn the target attention patterns and use them to reach a high accuracy on the target
task.

7.3 The RASP language

RASP contains a small set of primitives and operations built around the core task of
manipulating sequence processing functions referred to as s-ops (sequence operators),
functions that take in an input sequence and return an output sequence of the same
length. Excluding some atomic values, and the convenience of lists and dictionaries,
everything in RASP is a function. Hence, to simplify presentation, we often demonstrate
RASP values with one or more input-output pairs: for example

identity("hi") = "hi"4.

RASP has a small set of built-in s-ops, and the goal of programming in RASP is to
compose these into a final s-op computing the target task. For these compositions, the
functions select (creating selection matrices called selectors), aggregate (collapsing
selectors and s-ops into a new s-ops), and selector_width (creating an s-op from
a selector) are provided, along with several elementwise operators reflecting the feed-
forward sublayers of a transformer. As noted in Section 7.2, while all s-ops and selectors
are in fact functions, we will prefer to talk in terms of the sequences and matrices that
they create. Constant values in RASP (e.g., 2, T , h) are treated as s-ops with a
single value broadcast at all positions, and all symbolic values are assumed to have an
underlying numerical representation which is the value being manipulated in practice.

The built-in (base) s-ops The simplest s-op is the identity, given in RASP
under the name tokens: tokens("hi")="hi". The other built-in s-ops are indices
and length, processing input sequences as their names suggest:

indices("hi") = [0,1]

length("hi") = [2,2]

s-ops can be combined with constants (numbers, booleans, or tokens) or each other
to create new s-ops, in either an elementwise or more complicated fashion.

Elementwise combination of s-ops is done by the common operators for the
values they contain, for example:

(indices+1)("hi") = [1,2]

((indices+1)==length)("hi") = [F,T]

This includes also a ternary operator:

4We use strings as shorthand for a sequence of characters.
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(tokens if (indices%2==0) else "-")("hello")="h-l-o"

When the condition of the operator is an s-op itself, the result is an s-op that is
dependent on all 3 of the terms in the operator creating it.

Select and Aggregate operations are used to combine information from different
sequence positions. A selector takes two lists, representing keys and queries respectively,
and a predicate p, and computes from these a selection matrix describing for each key,
query pair (k, q) whether the condition p(k, q) holds.

For example:

sel([0, 1, 2], [1, 2, 3], <) =


T F F

T T F

T T T


An aggregate operation takes one selection matrix and one list, and averages for each
row of the matrix the values of the list in its selected columns. For example,

agg(


T F F

T T F

T T T

 , [10, 20, 30]) = [10, 15, 20]

Intuitively, a select-aggregate pair can be thought of as a two-dimensional map-reduce
operation. The selector can be viewed as performing filtering, and aggregate as per-
forming a reduce operation over the filtered elements (see Figure 7.2.2).

In RASP, the selection operation is provided through the function select, which
takes two s-ops k and q and a comparison operator ◦ and returns the composition of
sel(·, ·, ◦) with k and q, with this sequence-to-matrix function referred to as a selector.
For example:

a = select(indices,indices,<);

is a selector, and

a("hey") =


F F F

T F F

T T F


Similarly, the aggregation operation is provided through aggregate, which takes

one selector and one s-op and returns the composition of agg with these. For example:

aggregate(a,indices+1)("hey")=[0,1,1.5]5

5For convenience and efficiency, when averaging the filtered values in an aggregation, for every
position where only a single value has been selected, RASP passes that value directly to the out-
put without attempting to ‘average’ it. This saves the programmer from unnecessary conversion
into and out of numerical representations when making simple transfers of tokens between loca-
tions: for example, using the selector load1=select(indices,1,==), we may directly create the s-
op aggregate(load1,tokens)("hey")="eee". Additionally, in positions when no values are selected,
the aggregation simply returns a default value for the output (in Figure 7.2.2, we see this with default
value 0), this value may be set as one of the inputs to the aggregate function.
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Simple select-aggregate examples To create the s-op that reverses any input
sequence, we build a selector that requests for each query position the token at the
opposite end of the sequence, and then aggregate that selector with the original input
tokens:

flip = select(indices,length-indices-1,==);

reverse = aggregate(flip,tokens);

For example:

flip("hey") =


F F T
F T F

T F F


reverse("hey") = "yeh"

To compute the fraction of appearances of the token "a" in our input, we build a
selector that gathers information from all input positions, and then aggregate it with a
sequence broadcasting 1 wherever the input token is "a", and 0 everywhere else. This
is expressed as

select_all = select(1,1,==);

frac_as = aggregate(select_all,1 if tokens=="a" else 0);

Selector manipulations Selectors can be combined elementwise using boolean
logic. For example, with the same flip from above:

load1=select(indices,1,==);

(load1 or flip)("hey") =


F T T
F T F

T T F


Selector width The final operation in RASP is the powerful selector_width, which
takes as input a single selector and returns a new s-op that computes, for each output
position, the number of input values which that selector has chosen for it. This is best
understood by example: using the selector

same_token=select(tokens,tokens,==);

that filters for each query position the keys with the same token as its own, we can
compute its width to obtain a histogram of our input sequence:

selector_width(same_token)("hello") = [1,1,2,2,1]

Additional operations: While the above operations are together sufficient to rep-
resent any RASP program, RASP further provides a library of primitives for common
operations, such as in—either of a value within a sequence:

("i" in tokens)("hi") = [T,T]

or of each value in a sequence within some static list:
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(tokens in ["a","b","c"])("hat") = [F,T,F]

RASP also provides functions such as count, or sort.

7.3.1 Relation to a Transformer

We discuss how the RASP operations compile to describe the information flow of a
transformer architecture, suggesting how many heads and layers are needed to solve a
task.

The built-in (base) s-ops indices and tokens reflect the initial input embed-
dings of a transformer, while length is actually a library s-op computed in RASP as
follows:

select_all = select(1,1,==);

length = 1/aggregate(select_all,indicator(indices==0));

Elementwise Operations reflect the feed-forward sub-layers of a transformer.
These have overall not been restricted in any meaningful way: as famously shown by
[HSW89a], MLPs such as those present in the feed-forward transformer sub-layers can
approximate with arbitrary accuracy any borel-measurable function, provided suffi-
ciently large input and hidden dimensions.

Selection and Aggregation Selectors translate to attention matrices, defining
for each input the selection (attention) pattern used to mix the input values into a
new output through weighted averages, and aggregation reflects this final averaging
operation. The uniform weights dictated by our selectors reflect an attention pattern
in which ‘unselected’ pairs are all given strongly negative scores, while the selected pairs
all have higher, similar, scores. Such attention patterns are supported by the findings
of [MRG+20].

Decoupling selection and aggregation in RASP allows selectors to be reused in
multiple aggregations, abstracting away the fact that these may actually require sepa-
rate attention heads in the compiled architecture. Making selectors first class citizens
also enables functions such as selector_width, which take selectors as parameters.

Additional abstractions All other operations, including the powerful
selector_width operation, are implemented in terms of the above primitives.
selector_width in particular can be implemented such that it compiles to either
one or two selectors, depending on whether or not one can assume a BOS token
(marked §) is added to the input sequence. Its implementation is given in Section 7.7.

Compilation Converting an s-op to a transformer architecture is as simple as
tracing its computation flow out from the base s-ops. Each aggregation is an attention
head, which must be placed at a layer later than all of its inputs. Elementwise oper-
ations are feedforward operations, and sit in the earliest layer containing all of their
dependencies. Some optimisations are possible: for example, aggregations performed
at the same layer with the same selector can be merged into the same attention head.
A “full” compilation—to concrete transformer weights—requires to e.g. derive MLP
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weights for the elementwise operations, and is beyond the scope of this work. RASP
provides a method to visualise this compiled flow for any s-op and input pair: Figures
7.5.4 and 7.5.5 were rendered using

draw(reverse,"abcde")

and
draw(hist,"§aabbaabb")

7.4 Implications and Insights

Restricted-Attention Transformers Multiple works propose restricting the atten-
tion mechanism to create more efficient transformers, reducing the time complexity of
each layer from O(n2) to O(nlog(n)) or even O(n) with respect to the input sequence
length n (see [TDBM20] for a survey of such approaches). Several of these do so
using sparse attention, in which the attention is masked using different patterns to re-
duce the number of locations that can interact ([CGRS19; BPC20; AOA+20; ZGD+20;
RSVG21]).

Considering such transformer variants in terms of RASP allows us to reason about
the computations they can and cannot perform. In particular, these variants of trans-
formers all impose restrictions on the selectors, permanently forcing some of the n2

index pairs in every selector to False. But does this necessarily weaken these trans-
formers?

In Section 7.7 we present a sorting algorithm in RASP, applicable to input se-
quences with arbitrary length and alphabet size6. This problem is known to require
at Ω(n log(n)) operations in the input length n—implying that a standard transformer
can take full advantage of Ω(n log(n)) of the n2 operations it performs in every atten-
tion head. It follows from this that all variants restricting their attention to o(n log(n))
operations incur a real loss in expressive power.

Sandwich Transformers Recently, [PSL20] showed that reordering the atten-
tion and feed-forward sublayers of a transformer affects its ability to learn language
modelling tasks. In particular, they showed that: 1. pushing feed-forward sublayers
towards the bottom of a transformer weakened it; and 2. pushing attention sublayers
to the bottom and feed-forward sublayers to the top strengthened it, provided there
was still some interleaving in the middle.

The base operations of RASP help us understand the observations of [PSL20]. Any
arrangement of a transformer’s sublayers into a fixed architecture imposes a restric-
tion on the number and order of RASP operations that can be chained in a program
compilable to that architecture. For example, an architecture in which all feed-forward
sublayers appear before the attention sublayers, imposes that no elementwise opera-
tions may be applied to the result of any aggregation.

6Of course, realising this solution in real transformers requires sufficiently stable word and positional
embeddings—a practical limitation that applies to all transformer variants.
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In RASP, there is little value to repeated elementwise operations before the first
aggregate: each position has only its initial input, and cannot generate new infor-
mation. This explains the first observation of [PSL20]. In contrast, an architecture
beginning with several attention sublayers—i.e., multiple select-aggregate pairs—
will be able to gather a large amount of information into each position early in the
computation, even if only by simple rules7. More complicated gathering rules can
later be realised by applying elementwise operations to aggregated information before
generating new selectors, explaining the second observation.

Recognising Dyck-k Languages The Dyck-k languages—the languages of se-
quences of correctly balanced parentheses, with k parenthesis types—have been heav-
ily used in considering the expressive power of RNNs [SB18; STK18; Ber18; Mer19;
HHG+20].

Such investigations motivate similar questions for transformers, and several works
approach the task. [Hah20] proves that transformer-encoders with hard attention can-
not recognise Dyck-2. [BAG20] and [YPPN21] provide transformer-encoder construc-
tions for recognising simplified variants of Dyck-k, though the simplifications are such
that no conclusion can be drawn for unbounded depth Dyck-k with k > 1. Optimisti-
cally, [EGZ20] train a transformer-encoder with causal attention masking to process
Dyck-k languages with reasonable accuracy for several k > 1, finding that it learns a
stack-like behaviour to complete the task.

We consider Dyck-k using RASP, specifically defining Dyck-k-PTF as the task of
classifying for every prefix of a sequence whether it is legal, but not yet balanced (P),
balanced (T), or illegal (F). We show that RASP can solve this task in a fixed number
of heads and layers for any k, presenting our solution in Section 7.78.

Symbolic Reasoning in Transformers [CTR20] show that transformers are
able to emulate symbolic reasoning: they train a transformer which, given the facts
“Ben is a bird” and “birds can fly”, correctly validates that “Ben can fly”. Moreover,
they show that transformers are able to perform several logical ‘steps’: given also the
fact that only winged animals can fly, their transformer confirms that Ben has wings.
This finding however does not shed any light on how the transformer is achieving such
a feat.

RASP empowers us to approach the problem on a high level. We write a RASP
program for the related but simplified problem of containment and inference over sets of
elements, sets, and logical symbols, in which the example is written as b∈B, x∈B→x∈F,
b∈F? (implementation available in our repository). The main idea is to store at the
position of each set symbol the elements contained and not contained in that set, and

7While the attention sublayer of a transformer does do some local manipulations on its input to
create the candidate output vectors, it does not contain the powerful MLP with hidden layer as is
present in the feed-forward sublayer.

8We note that RASP does not suggest the embedding width needed to encode this solution in an
actual transformer.
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at each element symbol the sets it is and is not contained in. Logical inferences are
computed by passing information between symbols in the same ‘fact’, and propagated
through pairs of identical set or element symbols, which share their stored information.

Use of Separator Tokens [CKLM19] observe that many attention heads in
BERT [DCLT18] (sometimes) focus on separator tokens, speculating that these are
used for “no-ops” in the computation. [EGZ20] find that transformers more successfully
learn Dyck-k languages when the input is additionally provided with a beginning-of-
sequence (BOS) token, with the trained models treating it as a base in their stack when
there are no open parentheses. Our RASP programs suggest an additional role that
such separators may be playing: by providing a fixed signal from a ‘neutral’ position,
separators facilitate conditioned counting in transformers, that use the diffusion of the
signal to compute how many positions a head was attending to. Without such neutral
positions, counting requires an additional head, such that an agreed-upon position may
artificially be treated as neutral in one head and then independently accounted for in
the other.

A simple example of this is seen in Figure 7.5.5. There, selector_width is applied
with a BOS token, creating in the process an attention pattern that focuses on the first
input position (the BOS location) from all query positions, in addition to the actual po-
sitions selected by select(tokens,tokens,==). A full description of selector_width
is given in Section 7.7.

7.5 Experiments

We evaluate the relation of RASP to transformers on three fronts: 1. its ability to
upper bound the number of heads and layers required to solve a task, 2. the tightness
of that bound, and 3. its feasibility in a transformer, i.e., whether a sufficiently large
transformer can encode a given RASP solution. To do this we train several transformers,
we present the exact details of these transformers and their training in Section 7.6.

For this section, we consider the following tasks:

1. Reverse, e.g.:

reverse("abc")="cba"

2. Histograms, with a unique (and ignored) BOS token § and without it. E.g.:

hist_bos("§aba")=[§,2,1,2]

hist_nobos("aba")=[2,1,2]

3. Double-Histograms, with BOS: for each token, the number of unique tokens with
same histogram value as itself. E.g.:
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Attn.
Language Layers Heads Test Acc. Matches?
Reverse 2 1 99.99% ✓–

Hist BOS 1 1 100% ✓
Hist no BOS 1 2 99.97% ✓–

Double Hist 2 2 99.58% ✓–

Sort 2 1 99.96% 7
Most Freq 3 2 95.99% 7
Dyck-1 PTF 2 1 99.67% ✓–

Dyck-2 PTF 9 3 1 99.85% 7

Table 7.1: Does a RASP program correctly upper bound the number of heads and layers
needed for a transformer to solve a task? In the left columns, we show the compilation
size of our RASP programs for each considered task, and in the right columns we show
the best (of 4) accuracies of transformers trained on these same tasks, and evaluate
whether their attention mechanisms appear to match (using a ✓–for partially similar
patterns: see Figure 7.5.4 for an example). For RASP programs compiling to varying
number of heads per layer, we report the maximum of these.

hist2("§abbc")=[§,2,1,1,2]

4. Sort, with BOS: ordering the input tokens lexicographically. E.g.:

sort("§cba")="§abc"

5. Most-Freq, with BOS: returning the unique input tokens in order of decreasing
frequency, with original position as a tie-breaker and the BOS token for padding.
E.g.:

most_freq("§abbccddd")="§dbca§§§§"

6. Dyck-i PTF, for i = 1, 2: the task of returning, at each output position, whether
the input prefix up to and including that position is a legal Dyck-i sequence (T),
and if not, whether it can (P) or cannot (F) be continued into a legal Dyck-i
sequence. E.g:

Dyck1_ptf("()())")="PTPTF"

We refer to double-histogram as 2-hist, and to each Dyck-i PTF problem simply as
Dyck-i. The full RASP programs for these tasks, and the computation flows they
compile down to, are presented in Section 7.7. The size of the transformer architecture
each task compiles to is presented in Table 7.1.

9The actual optimal solution for Dyck-2 PTF cannot be realised in RASP as is, as it requires
the addition of a select-best operator to the language—reflecting the power afforded by softmax in the
transformer’s self-attention. In this paper, we always refer to our analysis of Dyck-2 with respect to
this additional operation.
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1 opp_index = length - indices - 1;
2 flip = select(indices , opp_index ,==);
3 reverse = aggregate(flip , tokens);

Figure 7.5.4: Top: RASP code for computing reverse (e.g., reverse("abc")="cba").
Below, its compilation to a transformer architecture (left, obtained through
draw(reverse,"abcde") in the RASP REPL), and the attention heatmaps of a trans-
former trained on the same task (right), both visualised on the same input. Visually,
the attention head in the second layer of this transformer corresponds perfectly to the
behaviour of the flip selector described in the program. The head in the first layer,
however, appears to have learned a different solution from our own: instead of focusing
uniformly on the entire sequence (as is done in the computation of length in RASP),
this head shows a preference for the last position in the sequence.

Upper bounding the difficulty of a task Given a RASP program for a task, e.g.
double-histogram as described in Figure 7.1.1, we can compile it down to a transformer
architecture, effectively predicting the maximum number of layers and layer width
(number of heads in a layer) needed to solve that task in a transformer. To evaluate
whether this bound is truly sufficient for the transformer, we train 4 transformers of
the prescribed sizes on each of the tasks.
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1 same_tok = select(tokens , tokens , ==);
2 hist = selector_width(same_tok ,
3 assume_bos = True);

Figure 7.5.5: The RASP program for computing with-BOS histograms (top), alongside
its compilation to a transformer architecture (cream boxes labelled layer 0 and layer
1) and the attention head (bottom) of a transformer trained on the same task, without
attention supervision. The compiled architecture and the trained head are both pre-
sented on the same input sequence, "§aabbaabb". The transformer architecture was
generated in the RASP REPL using draw(hist,"§aabbaabb").

We report the accuracy of the best trained transformer for each task in Table 7.1.
Most of these transformers reached accuracies of 99.5% and over, suggesting that the
upper bounds obtained by our programs are indeed sufficient for solving these tasks in
transformers. For some of the tasks, we even find that the RASP program is the same as
or very similar to the ‘natural’ solution found by the trained transformer. In particular,
Figures 7.5.4 and 7.5.5 show a strong similarity between the compiled and learned
attention patterns for the tasks Reverse and Histogram-BOS, though the transformer
trained on Reverse appears to have learned a different mechanism for computing length
than that given in RASP.

Tightness of the bound We evaluate the tightness of our RASP programs by
training smaller transformers than those predicted by our compilation, and observing
the drop-off in test accuracy. Specifically, we repeat our above experiments, but this
time we also train each task on up to 4 different sizes. In particular, denoting L, H

the number of layers and heads predicted by our compiled RASP programs, we train
for each task transformers with sizes (L, H), (L − 1, H), (L, H − 1), and (L − 1, 2H)
(where possible).10

10The transformers of size (L−1, 2H) are used to validate that any drop in accuracy is indeed due to
the reduction in number of layers, as opposed to the reduction in total heads that this entails. However,
doubling H means the embedding dimension will be divided over twice as many heads. To counteract
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Language RASP Average test accuracy (%) with...
L, H L, H H−1 L−1 L−1, 2H

Reverse 2, 1 99.9 - 23.1 41.2
Hist 1, 2 99.9 91.9 - -
2-Hist 2, 2 99.0 73.5 40.5 83.5
Sort 2, 1 99.8 - 99.0 99.9

Most Freq 3, 2 93.9 92.1 84.0 90.2
Dyck-1 2, 1 99.3 - 96.9 96.4
Dyck-2 3, 1 99.7 - 98.8 94.1

Table 7.2: Accuracy dropoff in transformers when reducing their number of heads and
layers relative to the compiled RASP solutions for the same tasks. The transformers
trained on the size predicted by RASP have very high accuracy, and in most cases there
is a clear drop as that size is reduced. Cases creating an impossible architecture (H or
L zero) are marked with -. Histogram with BOS uses only 1 layer and 1 head, and so is
not included. As in Table 7.1, Dyck-2 is considered with the addition of select_best
to RASP.

We report the average test accuracy reached by each of these architectures in Ta-
ble 7.2. For most of the tasks, the results show a clear drop in accuracy as the number
of heads or layers is reduced below that obtained by our compiled RASP solutions for
the same tasks—several of these reduced transformers fail completely to learn their
target languages.

The main exception to this is sort, which appears unaffected by the removal of one
layer, and even achieves its best results in this case. Drawing the attention pattern
for the single-layer sort transformers reveals relatively uniform attention patterns. It
appears that the transformer has learned to take advantage of the bounded input
alphabet size, effectively implementing bucket sort for its task. This is because a single
full-attention head is sufficient to compute for every token its total appearances in the
input, from which the correct output can be computed locally at every position.

Feasibility of a RASP program We verify that a given RASP program can
indeed be represented in a transformer. For this, we return to the tougher tasks above,
and this time train the transformer with an additional loss component encouraging it
to learn the attention patterns created in our compiled solution (i.e., we supervise the
attention patterns in addition to the target output). In particular, we consider the tasks
double-histogram, sort, and most-freq, all with the assumption of a BOS token in the
input. After training each transformer for 250 epochs with both target and attention
supervision, they all obtain high test accuracies on the task (99+%), and appear to
encode attention patterns similar to those compiled from our solutions. We present
the obtained patterns for double-histogram, alongside the compiled RASP solution, in
Figure 7.1.1. We present its full computation flow, as well as the learned attention
patterns and full flow of sort and most-freq, in Section 7.6.

any negative effect this may have, we also double the embedding dimension for these transformers.
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Figure 7.6.6: Computation flow in compiled architecture from RASP solution for sort
(with BOS token), alongside heatmaps from the corresponding heads in a transformer
trained with both target and attention supervision on the same task and RASP solu-
tion. The RASP solution is simply written sort(tokens,tokens,assume_bos=True),
using the function sort shown in Figure 7.7.15. Both the RASP architecture and the
transformer are applied to the input sequence "§fedcbaABCDEF".

7.6 Experiment Details and Additional Results

In this section we present the training details of the experiments in this work, as well
as additional results from the transformers trained to mimic RASP-predicted attention
patterns.

7.6.1 Results: Attention-regularised transformers

We trained 3 transformers with a target attention pattern according to our RASP
solutions, these 3 being for the tasks double-histogram, sort, and most-freq as described
in the paper. All of these reached high (99+%) accuracy on their sequence-to-sequence
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task, computed as fraction of output tokens predicted correctly. Plotting their attention
patterns also shows clear similarity to those of the compiled RASP programs:

For the double-histogram task, a full compiled architecture is presented on the
sequence §aabbaa in Figure 7.7.17. Additionally, in Figure 7.1.1, just its attention
patterns are presented alongside the corresponding attention heads from its attention-
regularised transformer, this time both on the sequence §aabbaabb.

For the sorting task, we present a full computation flow on the input sequence
§fedcbaABCDEF, alongside the corresponding attention heads of the regularised trans-
former on the same sequence, in Figure 7.6.6. The regularised transformer had input
alphabet of size 52 and reached test accuracy 99.0% on the task (measured as percent-
age of output positions where the correct output token had the maximum probability).

For the most-freq task (returning each unique token in the input, by descending
order of frequency, and padding the rest with the BOS token) we do the again show
a computation flow alongside the regularised transformer, this time in Figure 7.6.7
and with the sequence §aabbcddd. On this task the regularised transformer had input
alphabet of size 26 and reached test accuracy 99.9%.

7.6.2 Training Details

In the upper bound and tightness experiments (Section 7.5), for each task and lay-
er/head specification, we train transformers with embedding dimension 256 and feed-
forward dimension 512 on the task for 100 epochs. We use learning rates 0.0003 and
0.0001, and learning rate decay γ = 0.98 and 0.99, training 4 transformers overall for
each task. We use the ADAM optimiser and no dropout. Each transformer is trained
on sequences of length 0−−100, with train/validation/test set sizes of 50, 000, 1, 000,
and 1, 000 respectively. Excluding the BOS token, the alphabet sizes are: 3 and 5
and for Dyck-1 and Dyck-2 (the parentheses, plus one neutral token), 100 for reverse
and sort, and 26 for the rest (to allow for sufficient repetition of tokens in the input
sequences). All input sequences are sampled uniformly from the input alphabet and
length, with exception of the Dyck languages, for which they are generated with a bias
towards legal prefixes to avoid most outputs being F.

For the attention regularised transformers, we make the following changes: first, we
only train one transformer per language, with learning rate 0.0003 and decay 0.98. We
train each transformer for 250 epochs (though they reach high validation accuracy much
earlier than that). The loss this time is added to an MSE-loss component, computed
from the differences between each attention distribution and its expected pattern. As
this loss is quite small, we scale it by a factor of 100 before adding it to the standard
output loss.
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Figure 7.6.7: Computation flow in compiled architecture from RASP solution for sorting
by frequency (returning all unique tokens in an input sequence, sorted by decreasing
frequency), alongside heatmaps from attention heads in transformer trained on same
task and regularised to create same attention patterns. Both are presented on the
input sequence §abbccddd, for which the correct output is §dbca. The transformer
architecture has 3 layers with 2 heads apiece, but the RASP architecture requires only
1 head for each of the second and third layers. We regularised only one for each of
these and present just that head.
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7.7 RASP programs and computation flows for the tasks
considered

In this section we present the exact RASP solutions for all tasks considered in this work,
as well as an implementation of the operation selector_width in terms of other opera-
tions (which have direct translation to a transformer). We also present the computation
flows in compiled architectures for several of these solutions.

7.7.1 selector_width

The RASP implementation of selector_width is presented in Figure 7.7.9. The core
observation is that, by using a selector that always focuses on zero (or0 in the presented
code), we can compute the inverse of that selector’s width by aggregating a 1 from
position 0 and 0 from everywhere else. It then remains only to make a correction
according to whether or not the selector was actually focused on 0, using the second
selector and0 (if there isn’t a beginning-of-sequence token) or our prior knowledge about
the input (if there is).

7.7.2 RASP solutions for the paper tasks

We now present the RASP solutions for each of the tasks considered in the paper, as
well as an implementation of the RASP primitive selector_width in terms of only the
primitives select and aggregate.

The solution for histograms, with or without a BOS token, is given in Figure 7.7.11.
The code for double-histograms (e.g., hist2("aaabbccdef”)=[1,1,1,2,2,2,2,3,3,3])
is given in Figure 7.7.12. The general sorting algorithm (sorting any one sequence by
the values (‘keys’) of any other sequence) is given in Figure 7.7.13, and sorting the
tokens by their frequency (”Most freq”) is given in Figure 7.7.14. Descriptions of these
solutions are in their captions.

The Dyck-PTF Languages Dyck-1-PTF First each position attends to all previous
positions up to and including itself in order to compute the balance between opening
and closing braces up to itself, not yet considering the internal ordering of these. Next,
each position again attends to all previous positions, this time to see if the ordering
was problematic at some point (i.e., there was a negative balance). From there it is
possible to infer for each prefix whether it is balanced (T), could be balanced with some
more closing parentheses (P), or can no longer be balanced (F). We present the code
in Figure 7.7.15.

Dyck-2-PTF For this descripition we differentiate between instances of an opening
and closing parenthesis (opener and closer) matching each other with respect to their
position within a given sequence, e.g. as (,> and {,] do in the sequence ({]>, and
of the actual tokens matching with respect to the pair definitions, e.g. as the token
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1 pairs = ["()","{}","[]"]; # etc ...
2 openers = [p[0] for p in pairs];
3 closers = [p[1] for p in pairs];
4 opens = tokens in openers;
5 closes = tokens in closers;
6 n_opens = num_prevs(opens);
7 n_closes = num_prevs(closes);
8
9 depth = n_opens - n_closes;

10 adjusted_depth =
11 depth + indicator(closes);
12 earlier_same_depth =
13 select(adjusted_depth ,adjusted_depth ,==)
14 and
15 select(indices ,indices ,<=);
16 depth_index =
17 selector_width(earlier_same_depth);
18 open_for_close =
19 select(opens ,True,==) and
20 earlier_same_depth and
21 select(depth_index ,
22 depth_index -1,==);
23 matched_opener =
24 aggregate(open_for_close ,tokens ,"-");
25 opener_matches =
26 (matched_opener+tokens) in pairs;
27 mismatch = closes and not opener_matches;
28 had_problem =
29 num_prevs(mismatch or depth<0 )>0;
30 dyck3 = "F" if had_problem else
31 ("T" if depth==0 else "P");

Figure 7.7.8: Pure RASP code (as opposed to with an additional select-best operation)
for computing Dyck-3-PTF with the parentheses (,), {,} and [,]. The code can be
used for any Dyck-n by extending the list pairs, without introducing additional layers
or heads.
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pairs {,} and (,) are defined. For clarity, we refer to these as structure-match and
pair-match, respectively.

For a Dyck-n sequence to be balanced, it must satisfy the balance checks as described
in Dyck-1 (when treating all openers and all closers as the same), and additionally, it
must satisfy that every structure-matched pair is also a pair-match.

We begin by using the function num_prevs from Figure 7.7.15 to compute balances
as for Dyck-1, ignoring which token pair each opener or closer belongs to. Next, we
create an attention pattern open_for_close that focuses each closer on its structure-
matched opener, and use that pattern to pull up the structure-matched opener for each
closer (the behaviour of that pattern on closers that do not have structure-matched
openers is not important: in this case there will anyway be a negative balance at
that closer). For each location, we then check that it does not have an earlier neg-
ative balance, and it does not have an earlier closer whose structure-matched opener
is not a pair-match. If it fails these conditions the output is F, otherwise it is T if
the current balance is 0 and P otherwise. The remaining challenge is in computing
open_for_close.

In pure RASP—i.e., within the language as presented in this work—this is realis-
able in two steps. First, we number each parenthesis according to how many previous
parentheses have the same depth as itself, taking for openers the depth after their ap-
pearance and for closers the depth before. For example, for (())(), the depths are
[1,2,2,1,1,1], and the depth-index is [1,1,2,2,3,3]. Then, each closer’s structure-
matched opener is the opener with the same depth as itself, and depth-number immedi-
ately preceding its own. This solution is given in Figure 7.7.8, and compiles to 4 layers
with maximum width 2.

However, by adding the theoretical operation select_best, and a scorer object
similar to selectors (with number values as opposed to booleans), we can reduce the
computation of open_for_close to simply: “find the last opener with the same depth
as the closer, that is still before the closer”. In this case, the depth-index of each
position does not need to be computed in order to obtain open_for_close, saving the
layer and 2 heads that its compilation creates. We now elaborate on select_best and
this alternative computation of open_for_close.

select_best (Theoretical) First, we imagine a new operator score that behaves
similarly to select, except that: instead of using predicates such as ==, <, or > to
compare values and create selectors, it expects the values to be numbers and simply
multiplies them to create scorers. For example (presented on concrete input for clarity,
similar to the presentations in Section 7.3):

score([0, 1, 2], [1,−1, 1]) =


0 1 2
0 −1 −2
0 1 2
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Next we define select_best as a function taking one selector sel and one scorer sc,
and returning a new selector in which, for each position, only the selected value of sel

with the highest score in sc remains. For example (presented again on concrete input
for clarity, as opposed to function-building syntax of RASP):

sel_best(


T T T
T T F

F F F

 ,


0 1 2
0 1 2
0 1 2

) =


F F T
F T F

F F F


With this definition of score and select_best we obtain open_for_close using

the alternative approach described above (the last opener with the same depth as the
closer’s, that is still before the closer) as follows:

1 possible_open_for_close =
2 select(indices ,indices ,<) and
3 select(opens ,True,==) and
4 select(adjusted_depth ,adjusted_depth ,==);
5 open_for_close = select_best(
6 open_for_close ,
7 score(indices ,1) );

This approach does not use depth_index to obtain open_for_close, allowing us to
save a layer in our calculation.

7.7.3 Computation flows for select solutions

RASP can compile the the architecture of any s-op, and display it with an example
input sequence. The command is draw(s2s,inp) where s2s is the target s-op and
inp is the example sequence to display, e.g., draw(dyck1,"(())").

Example computation flows for hist_bos and reverse are given in the main paper
in Figures 7.5.5 and 7.5.4, respectively.

An example computation flow for hist_nobos is given in Figure 7.7.16. The double-
histogram flow partially shown in Figure 7.1.1 is shown in full in Figure 7.7.17. Com-
putation flows for the compiled architectures of sort and for most_freq (as solved
in Figures 7.7.13 and 7.7.14) are shown in full, alongside the attention patterns of
respectively attention-regularised transformers, in Section 7.6. Computation flows for
Dyck-1-PTF and Dyck-2-PTF are shown in Figure 7.7.18 and Figure 7.7.19.
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1 def selector_width(sel,
2 assume_bos = False) {
3
4 light0 = indicator(
5 indices == 0);
6 or0 = sel or select_eq(indices ,0);
7 and0 =sel and select_eq(indices ,0);
8 or0_0_frac =aggregate(or0, light0);
9 or0_width = 1/or0_0_frac;

10 and0_width =
11 aggregate(and0 ,light0 ,0);
12
13 # if has bos, remove bos from width
14 # (doesn 't count , even if chosen by
15 # sel) and return.
16 bos_res = or0_width - 1;
17
18 # else , remove 0-position from or0,
19 # and re-add according to and0:
20 nobos_res = bos_res + and0_width;
21
22 return bos_res if assume_bos else
23 nobos_res;
24 }
25

Figure 7.7.9: Implementation of the powerful RASP operation selector_width in
terms of other RASP operations. It is through this implementation that RASP compiles
selector_width down to the transformer architecture.

1 reverse = aggregate(
2 select(indices ,
3 length -indices -1,==)
4 tokens );

Figure 7.7.10: RASP one-liner for reversing the original input sequence, tokens. This
compiles to an architecture with two layers: length requires an attention head to
compute, and reverse applies a select-aggregate pair that uses (among others) the
s-op length.

135



1 def histf(seq, assume_bos = False) {
2 same_tok = select(seq,seq,==);
3 return selector_width(same_tok ,
4 assume_bos= assume_bos);
5 }

Figure 7.7.11: RASP program for computing histograms over any sequence, with or
without a BOS token. Assuming a BOS token allows compilation to only one layer
and one head, through the implementation of selector_width as in Figure 7.7.9. The
hist_bos and hist_nobos tasks in this work are obtained through histf(tokens),
with or without assume_bos set to True.

1 def has_prev(seq) {
2 prev_copy =
3 select(seq,seq,==) and
4 select(indices ,indices ,<);
5 return aggregate(prev_copy ,1,0)>0;
6 }
7
8 is_repr = not has_prev(tokens);
9 same_count =

10 select(hist_bos , hist_bos ,==);
11 same_count_reprs = same_count and
12 select(isnt_repr , False,==);
13 hist2 =selector_width(
14 same_count_reprs ,
15 assume_bos = True);

Figure 7.7.12: RASP code for hist-2, making use of the previously computed hist
s-op created in Figure 7.7.11. We assume there is a BOS token in the input,
though we can remove that assumption by simply using hist_nobos and removing
assume_bos=True from the call to selector_width. The segment defines and uses a
simple function has_prev to compute whether a token already has an copy earlier in
the sequence.
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1 def sort(vals ,keys ,assume_bos=False) {
2 smaller = select(keys ,keys ,<) or
3 (select(keys ,keys ,==) and
4 select(indices ,indices ,<) );
5 num_smaller =
6 selector_width(smaller ,
7 assume_bos=assume_bos);
8 target_pos = num_smaller if
9 not assume_bos else

10 (0 if indices==0 else (num_smaller+1));
11 sel_new =
12 select(target_pos ,indices ,==);
13 sort = aggregate(sel_new ,vals);
14 }

Figure 7.7.13: RASP code for sorting the s-op vals according to the order of the
tokens in the s-op keys, with or without a BOS token. The idea is for every po-
sition to focus on all positions with keys smaller than its own (with input position
as a tiebreaker), and then use selector_width to compute its target position from
that. A further select-aggregate pair then moves each value in val to its target posi-
tion. The sorting task considered in this work’s experiments is implemented simply as
sort_input=sort(tokens,tokens).

1 max_len = 20000;
2 freq = hist(tokens ,assume_bos=True);
3 is_repr = not has_prev(tokens);
4 keys = freq -
5 indicator(not is_repr) * max_len;
6 values = tokens if is_repr else "§"
7 most_freq = sort(values ,keys ,
8 assume_bos=True);

Figure 7.7.14: RASP code for returning the unique tokens of the input sequence (with
a BOS token), sorted by order of descending frequency (with padding for the remainder
of the output sequence). The code uses the functions hist and sort defined in Figures
7.7.11 and 7.7.13, as well as the utility function has_prev defined in Figure 7.7.12.
First, hist computes the frequency of each input token. Then, each input token with an
earlier copy of the same token (e.g., the second "a" in "baa") is marked as a duplicate.
The key for each position is set as its token’s frequency, minus the maximum expected
input sequence length if it is marked as a duplicate. The value for each position is set
to its token, unless that token is a duplicate in which case it is set to the non-token §.
The values are then sorted by the keys, using sort as presented in Figure 7.7.13.
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1 def num_prevs(bools) {
2 prevs = select(indices ,indices ,<=);
3 return (indices+1) *
4 aggregate(prevs ,
5 indicator(bools));
6 }
7 n_opens = num_prevs(tokens=="(");
8 n_closes = num_prevs(tokens==")");
9 balance = n_opens - n_closes;

10 prev_imbalances = num_prevs(balance<0);
11 dyck1PTF = "F" if prev_imbalances > 0
12 else
13 ("T" if balance==0 else "P");

Figure 7.7.15: RASP code for computing Dyck-1-PTF with the parentheses ( and ).
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Figure 7.7.16: Computation flow in compiled architecture from RASP solution for
histogram without a beginning-of-sequence token (using histf(tokens) with histf
from Figure 7.7.11). We present the short sequence "aabbaa", in which the counts of
a and b are different.
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Figure 7.7.17: Computation flow in compiled architecture from RASP solution for
double-histogram, for solution shown in Figure 7.7.12. Applied to "§aaabbccdef", as
in Figure 7.1.1.
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layer 0

layer 1

head 0
(up_to_self)

layer 2

head 0
(up_to_self)

X t ( ( ) ) ( ) ) (0)

FF seq  1  1  0  0  1  0  0 (1) from (0)

FF seq  0  0  1  1  0  1  1 (2) from (0)

FF T T T T T T T T (3) from ()

FF P P P P P P P P (4) from ()

FF F F F F F F F F (5) from ()

Other indices  0  1  2  3  4  5  6

Me indices  0  1  2  3  4  5  6

 0  1  2  3  4  5  6

 0        

 1        

 2        

 3        

 4        

 5        

 6        

X seq  1  1  0  0  1  0  0 X seq  0  0  1  1  0  1  1

seq  1 1.0 0.667 0.5 0.6 0.5 0.429

X indices  0  1  2  3  4  5  6 (0)

X seq  1 1.0 0.667 0.5 0.6 0.5 0.429 (1)

X seq  0 0.0 0.333 0.5 0.4 0.5 0.571 (2)

X T T T T T T T T (3)

X P P P P P P P P (4)

FF n_opens  1 2.0 2.0 2.0 3.0 3.0 3.0 (5) from (1, 0)

FF n_closes  0 0.0 1.0 2.0 2.0 3.0 4.0 (6) from (0, 2)

FF balance  1 2.0 1.0 0.0 1.0 0.0 -1.0 (7) from (6, 5)

FF seq  0  0  0  0  0  0  1 (8) from (7)

FF T if ( balance == 0 ) else P P P P T P T P (9) from (4, 3, 7)

seq  0 0.0 0.333 0.5 0.4 0.5 0.571

Other indices  0  1  2  3  4  5  6

Me indices  0  1  2  3  4  5  6

 0  1  2  3  4  5  6

 0        

 1        

 2        

 3        

 4        

 5        

 6        

X seq  0  0  0  0  0  0  1

prev_imbalances  0 0.0 0.0 0.0 0.0 0.0 0.143

X prev_imbalances  0 0.0 0.0 0.0 0.0 0.0 0.143

X T if ( balance == 0 ) else P P P P T P T P

X F F F F F F F F

FF dyck1_ptf P P P T P T F

Figure 7.7.18: Computation flow in compiled architecture from RASP solution for
Dyck-1, for solution shown in Figure 7.7.15. Applied to the unbalanced input sequence
"(())())".
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layer 3

head 0
(open_for_close)

layer 0

layer 1

head 0
(up_to_self)

layer 2

head 0
(sAND0)

head 1
(sOR0)

layer 4

head 0
(up_to_self)

X indices  0  1  2  3  4  5  6 (0)
X tokens ( { ) ) ( } ) (1)
FF opens  1  1  0  0  1  0  0 (2) from (1)
FF closes  0  0  1  1  0  1  1 (3) from (1)
FF I(( indices == 0 ))  1  0  0  0  0  0  0 (4) from (0)

Other indices  0  1  2  3  4  5  6
Me indices  0  1  2  3  4  5  6

 0  1  2  3  4  5  6
 0        
 1        
 2        
 3        
 4        
 5        
 6        

X opens  1  1  0  0  1  0  0 X closes  0  0  1  1  0  1  1

s-op  1 1.0 0.667 0.5 0.6 0.5 0.429

X indices  0  1  2  3  4  5  6 (0)
X closes  0  0  1  1  0  1  1 (1)
X s-op  1 1.0 0.667 0.5 0.6 0.5 0.429 (2)
X s-op  0 0.0 0.333 0.5 0.4 0.5 0.571 (3)
FF n_opens  1 2.0 2.0 2.0 3.0 3.0 3.0 (4) from (0, 2)
FF n_closes  0 0.0 1.0 2.0 2.0 3.0 4.0 (5) from (0, 3)
FF depth  1 2.0 1.0 0.0 1.0 0.0 -1.0 (6) from (5, 4)
FF delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0 (7) from (6, 1)

s-op  0 0.0 0.333 0.5 0.4 0.5 0.571

Other indices  0  1  2  3  4  5  6
Other delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0
Me indices  0  1  2  3  4  5  6
Me delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0
Me 0  0  0  0  0  0  0  0

 0  1  2  3  4  5  6
 1 2.0 2.0 1.0 1.0 1.0 0.0

 0  1  0        
 1 2.0  0        
 2 2.0  0        
 3 1.0  0        
 4 1.0  0        
 5 1.0  0        
 6 0.0  0        

X 1  1  1  1  1  1  1  1

valat0  1  0  0  1  1  1  0

X inverted  1 0.5 0.333 0.5 0.333 0.25 0.5 (0)
X valat0  1  0  0  1  1  1  0 (1)
FF except0 0.0 1.0 2.0 1.0 2.0 3.0 1.0 (2) from (0)
FF depth_index  1  1  2  2  3  4  1 (3) from (1, 2)
FF ( depth_index - 1 )  0  0  1  1  2  3  0 (4) from (3)

default: 0

 0  1  2  3  4  5  6
 1 2.0 2.0 1.0 1.0 1.0 0.0

 0  1  0        
 1 2.0  0        
 2 2.0  0        
 3 1.0  0        
 4 1.0  0        
 5 1.0  0        
 6 0.0  0        

X I(( indices == 0 ))  1  0  0  0  0  0  0

Other indices  0  1  2  3  4  5  6
Other delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0
Me indices  0  1  2  3  4  5  6
Me delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0
Me 0  0  0  0  0  0  0  0

inverted  1 0.5 0.333 0.5 0.333 0.25 0.5

Other opens  1  1  0  0  1  0  0
Other delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0
Other depth_index  1  1  2  2  3  4  1
Me delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0
Me True T T T T T T T
Me ( depth_index - 1 )  0  0  1  1  2  3  0

 1  1  0  0  1  0  0
 1 2.0 2.0 1.0 1.0 1.0 0.0
 1  1  2  2  3  4  1

 1 T  0        
2.0 T  0        
2.0 T  1        
1.0 T  1        
1.0 T  2        
1.0 T  3        
0.0 T  0        

X tokens ( { ) ) ( } )

matched_opener - - { ( - ( -

X tokens ( { ) ) ( } ) (0)
X closes  0  0  1  1  0  1  1 (1)
X depth  1 2.0 1.0 0.0 1.0 0.0 -1.0 (2)
X matched_opener - - { ( - ( - (3)
FF opener_matches F F F T F F F (4) from (3, 0)
FF mismatch F F T F F T T (5) from (4, 1)
FF I(( mismatch or ( depth < 0 )))  0  0  1  0  0  1  1 (6) from (2, 5)

default: -

Other indices  0  1  2  3  4  5  6
Me indices  0  1  2  3  4  5  6

 0  1  2  3  4  5  6
 0        
 1        
 2        
 3        
 4        
 5        
 6        

X I(( mismatch or ( depth < 0 )))  0  0  1  0  0  1  1

s-op  0 0.0 0.333 0.25 0.2 0.333 0.429

X depth  1 2.0 1.0 0.0 1.0 0.0 -1.0 (0)
X s-op  0 0.0 0.333 0.25 0.2 0.333 0.429 (1)
FF had_problem F F T T T T T (2) from (1)
FF dyck2_ptf P P F F F F F (3) from (0, 2)

Figure 7.7.19: Computation flow in compiled architecture from RASP solution for
Dyck-2, for solution shown in Figure 7.7.8. Applied to the unbalanced and ‘incorrectly
matched’ (with respect to structure/pair-matches) sequence "())()".
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Chapter 8

Conclusions

We approach the problem of understanding neural sequence models (NSMs), using the
framework of formal languages and models. We begin with an extensive exploration of
the connection between RNNs and various automata variants, which we use to recover
several types of formal languages and rules from RNNs and also to predict the kinds
of formal languages and rules which they can encode. We then lay the groundwork for
similar explorations in transformers, proposing RASP as a model with a strong intu-
itive connection to transformers. Our extraction work diverges from previous methods
by applying exact learning (and in particular the L∗ algorithm) to neural networks,
and our RNN analysis work differs from previous results by taking into account the
constraints under which RNNs are used in practice. Finally, while many works analyse
the expressive power of transformers, our work on RASP is the first to propose an
intuitive model for reasoning about and communicating the mechanisms they use in
practice.

We evaluate our extraction works on various RNNs trained on multiple formal and
even (in the case of PDFA extraction) some real-world languages. On simple regular
languages, our DFA extraction approach takes orders of time less magnitude to complete
than other methods, and regularly recovers smaller, more accurate DFAs—regardless
of the size of the underlying RNNs. Our PDFA extraction work is also optimal for
languages defined by small target PDFAs. For the real world tasks however, extracting
n-grams maintains a strong advantage over PDFAs. Both methods will benefit from
future work to make them more efficient, for example by ignoring ‘unimportant’ parts
of the input space.

In our experiments on DFA extraction, we play with some non-regular languages
and observe some RNNs achieving surprising success. On closer inspection of their in-
ternal architectures, we see that the LSTM networks are well adapted to implementing
a counting mechanism in individual dimensions in their memory vectors, while GRUs
cannot do this at all (and similarly for the IRNN and SRNN architectures). We demon-
strate the resulting difference in the practical expressive power of the GRU and LSTM
architectures.
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Our work on RNNs makes the case that knowing the appropriate symbolic mod-
els for different NSM architectures can guide us both in extracting symbolic models
from trained networks and in understanding the different expressive capacities of their
variants. We are guided by this to our next project, in which we seek the appropriate
symbolic model for the transformer.

We abstract the computation model of the transformer-encoder as a simple sequence
processing language, RASP, that captures the unique constraints on information flow
present in a transformer. Considering computation problems and their implementation
in RASP allows us to “think like a transformer” while abstracting away the technical
details of a neural network in favour of symbolic programs. We show several examples of
programs written in the RASP language, showing how operations can be implemented
by a transformer, and train several transformers on these tasks, finding that RASP
helps predict the number of transformer heads and layers needed to solve them.

For RNNs, we show that taking into consideration the constraints with which an
RNN is used in practice (in particular, O(n) or even exactly n run time, and bounded
precision) can reveal much weaker expressive power than previously believed, and even
differentiates between different RNN architectures previously considered equivalent.
Specifically, we show that the LSTM and IRNN architectures can implement counters
in individual dimensions of their states, and use them to recognise various counting-
based languages, a set of languages that intersects the Chomsky hierarchy. In contrast,
we find that the GRU and SRNN are unable to implement such counters in practice,
and struggle on counting tasks in general. Our results highlight the importance of
relevant practical assumptions for theoretical analyses.

For transformers, we begin without any model for reasoning about their behaviour:
there is no intuitive way to describe the transfer of information from one input position
to another, or We show several examples of programs written in the RASP language,
showing how operations can be implemented by a transformer, and train several trans-
formers on these tasks, finding that RASP helps predict the number of transformer
heads and layers needed to solve them. Additionally, we use RASP to shed light on an
empirical observation over transformer variants, and find concrete limitations for some
“efficient transformers”.

Resources

The codebases for the works presented in this thesis are available at (in order):
www.github.com/tech-srl/lstar_extraction (DFA extraction from RNNs)
www.github.com/tech-srl/counting_dimensions (LSTMs can count)
www.github.com/tech-srl/weighted_lstar (W- and P-DFA learning)
www.github.com/tech-srl/rasp (RASP: REPL)
www.github.com/tech-srl/RASP-exps (RASP: transformer experiments)
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היכולת יכולה. ---לא GRU אחרת---ה פופולרית שגרסא בעוד שלו, הפנימי במצב מונה לממש יכולת

ספירה מבוססות שפות מספר מוצאים אנו אין: GRU של- LSTM ל- חישוביים כוחות מקנה הזאת

זאת עושה LSTM שה רואים ואף , GRU מה טובה יותר הרבה במידה לזהות מצליח LSTM שה

בעבודתנו. האלה היכולות מאוחרי המנגנונים על מרחיבים אנו ברורים. מונים מימוש בעזרת

שייתן המודל את מחפשים אנו טרנספורמרים, עבור הזה המחקר קו את להמשיך מנת על לבסוף,

שאוטומטים משתכנעים מהר אנו רנ''חים. עם אותנו הכווינו שאוטומטים כמו עליהם אינטואיציה לנו

הטרנספורמר מבנה על עמוקה הסתכלות במקום, הזה. במקרה המתאים המודל אינם דומים ומודלים

כקלט: מקבל שהוא רצף כל על מוגבלות פעולות של סופי מספר מבצע אשר מודל של אינטואיציה נותן

נבנה פה המוצגת בעבודה אפשריות. פעולות של קטן מספר עם לולאות, חסרת תכנות שפת מעין

לעשות שניתן מעניינים חישובים ומספר שלה, האפשריות הפעולות הזאת, תכנות השפת את ונתאר

הרצפים עיבודי מנגנוני את מתארת זו שפה .RASP שלנו, הסימבולית תכנות השפת את נציג בעזרתה:

לבצע שניתן החישובים סוג על עמוקה אינטואיציה ומאפשרת הטרנספורמר, לרשות העומדים השונים

לבצעם. ממנו שיידרש ורוחב והעומק בעזרתו,

ii



תקציר

הקלטות, טקסט, ''רצפים''---כגון לעיבוד נירונים ברשתות בשימוש רב עניין היה האחרונות בשנים

Recurrent Neural או (רנ''חים, חזרתיות נירונים רשתות באמצעות גנטיים---בפרט ורצפים

פרמטרים- ורבות גזירות אלה---פונקציות נירונים רשתות וטרנספורמרים. באנגלית) Networks
מרשימות תוצאות ומשיגות יעד, ממשימת קלט-פלט דוגמאות של גדולים אוספים על --מאומנות

חיקוי ועד אוטומטי ותרגום דיבור מתעתוק להכל משומשות הן כיום רצפים. עיבוד משימות במגוון

מאוד, מרשימות שלהן שהתוצאות בעוד אבל ועוד. אוטומוטי, מסחר חופשי, באופן טבעית שפה

רשת. כל למדה בפועל מה להבין וקשה עמום, שלהן הייצוג

שיטות נציג בפרט, רצפים. לעיבוד רשתות אותן של בפירוש בעיקר מתרכזת הזאת בתזה העבודה

להבין מנת על שונות רנ''חים מימושי של ניתוחים מאומנות, מרנ''חים לפירוש ניתנים חוקים לייצוא

עבור וניתוחים הייצואים אותם את לבצע יהיה ניתן שבעזרתו חישובי מודל ואף יותר, טוב אותן

יותר. ומסובכת חזקה, חדשה, ארכיטקטורה שהם טרנספורמים,

אוטומטים עם ברור אינטואיטיבי קשר לרנ''חים בה: להתמקד שטבעי חוקים משפחת יש רנ''חים עבור

אותה בשל רנ''חים מתוך אוטומטים לשחזר מנסות עבודות הרבה ולמעשה דטרמניסטיים, סופיים

הרנ''חים של המצבים מרחב בפיצול התמקדו כזה (ייצוא) לשחזור קיימים שאלגוריתמים בעוד סיבה.

לייצוא חדשה שיטה נציג אנו ביניהם, המעברים את למפות מנת על סופי, מקבצים מספר לתוך

המדויק באלגוריתם תשתמש שלנו השיטה בפרט, מדויקת. למידה גם שמשלבת מרנ''חים אוטומטים

לקרב איך נראה זאת, לעשות מנת על בעבר. רנ''חים על הופעל לא אשר אוטומטים, ללמידת L∗

הקיימים מצבים ומקבץ הפיצול שיטות בעזרת ,L∗ של ה''שקילות'' לשאילתות תשובות יעיל באופן

הקיימים האלגוריתמים שתי בו איטרטיבי, כתהליך הכולל האלגוריתם את לראות ניתן רנ''חים. עבור

זה. בעזרת זה האוטומט את משחזרים

ממצב נעבור בפרט, .L∗ לאלגוריתם ממושקלת גרסא נפתח בו ממושקל, למקרה נרחיב מכן לאחר

הוא קלט של ה''סיווג'' שבו נדחה---למצב או אפשריים---מתקבל סיווגים שתי רק יש קלט לכל שבו

סיווגים אינסוף שנותן הקלט---מה את להמשיך הצפויות האפשריות האותיות מעל רציפה התפלגות

קטנים להבדלים סובלנות הכנסת יהיה כאן האתגר בדידים, סיווגים עבור בנוי L∗ ו היות אפשריים.

עדיין זהים לא אך דומים תיוגים בעלי מצבים לשתי תאפשר כזו סובלנות .L∗ לתוך סיווגים בין

מחבר המקורית שבגרסתו ,L∗ את להפעיל נוכל כזו סובלנות בעזרת רק יחיד. מצב של יחס לקבל

שבה. הרעש וכל מאומנת נירונים רשת על זהים, מצבים רק

על מעניינות לתובנות גם מגיעים אנו מאומנות, מרשתות אוטומטים שחזור על שלנו מהעבודה כחלק

בעל הוא , LSTM ה הרנ''ח, של הפופולריות הגרסאות שאחת מגלים אנו בפרט, שלהן. ההתנהגות
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